Fixes to memory component

This commit is contained in:
Vasilije 2024-02-19 12:44:53 +01:00
parent 0a38e09b3f
commit 99b1073560
3 changed files with 12 additions and 11 deletions

View file

@ -1004,7 +1004,7 @@ async def unlink_user_from_another(
logging.error(f"Error disconnecting user nodes: {e}")
raise
from .networkx_graph import NetworkXGraphDB
from .networkx.networkx_graph import NetworkXGraphDB
class GraphDBFactory:

21
main.py
View file

@ -461,14 +461,15 @@ async def user_context_enrichment(
# await user_query_to_graph_db(session, user_id, query)
semantic_mem = neo4j_graph_db.retrieve_semantic_memory(user_id=user_id)
semantic_mem = await neo4j_graph_db.retrieve_semantic_memory(user_id=user_id)
await neo4j_graph_db.close()
neo4j_graph_db = Neo4jGraphDB(
url=config.graph_database_url,
username=config.graph_database_username,
password=config.graph_database_password,
)
episodic_mem = neo4j_graph_db.retrieve_episodic_memory(user_id=user_id)
episodic_mem = await neo4j_graph_db.retrieve_episodic_memory(user_id=user_id)
logging.info("Episodic memory is %s", episodic_mem)
await neo4j_graph_db.close()
# public_mem = neo4j_graph_db.retrieve_public_memory(user_id=user_id)
@ -581,8 +582,8 @@ async def user_context_enrichment(
context = f""" You are a memory system that uses cognitive architecture to enrich the
LLM context and provide better query response.
You have access to the following information:
EPISODIC MEMORY: {episodic_mem[:200]}
SEMANTIC MEMORY: {semantic_mem[:200]}
EPISODIC MEMORY: {episodic_mem}
SEMANTIC MEMORY: {semantic_mem}
PROCEDURAL MEMORY: NULL
SEARCH CONTEXT: The following documents provided with sources they were
extracted from could be used to provide an answer {search_context}
@ -764,8 +765,8 @@ async def main():
class GraphQLQuery(BaseModel):
query: str
gg = await user_query_to_graph_db(session, user_id, "How does cognitive architecture work?")
print(gg)
# gg = await user_query_to_graph_db(session, user_id, "How does cognitive architecture work?")
# print(gg)
# def cypher_statement_correcting( input: str) -> str:
# out = aclient.chat.completions.create(
@ -846,10 +847,10 @@ async def main():
# print(bb)
# await attach_user_to_memory(user_id=user_id, labels=['sr'], topic="PublicMemory")
# return_ = await user_context_enrichment(user_id=user_id, query="Koja je minimalna širina vrata za osobe sa invaliditetom?", session=session, memory_type="PublicMemory", generative_response=True)
# print(return_)
# aa = await relevance_feedback("I need to understand how to build a staircase in an apartment building", "PublicMemory")
user_id = "test_user"
return_ = await user_context_enrichment(user_id=user_id, query="I need to understand what did I do yesterday?", session=session, memory_type="SemanticMemory", generative_response=True)
print(return_)
# aa = await relevance_feedback("I need to understand what did I do yesterday", "PublicMemory")
# print(aa)
# document_summary = {