Fixes to memory component
This commit is contained in:
parent
0a38e09b3f
commit
99b1073560
3 changed files with 12 additions and 11 deletions
|
|
@ -1004,7 +1004,7 @@ async def unlink_user_from_another(
|
|||
logging.error(f"Error disconnecting user nodes: {e}")
|
||||
raise
|
||||
|
||||
from .networkx_graph import NetworkXGraphDB
|
||||
from .networkx.networkx_graph import NetworkXGraphDB
|
||||
|
||||
|
||||
class GraphDBFactory:
|
||||
|
|
|
|||
21
main.py
21
main.py
|
|
@ -461,14 +461,15 @@ async def user_context_enrichment(
|
|||
|
||||
# await user_query_to_graph_db(session, user_id, query)
|
||||
|
||||
semantic_mem = neo4j_graph_db.retrieve_semantic_memory(user_id=user_id)
|
||||
semantic_mem = await neo4j_graph_db.retrieve_semantic_memory(user_id=user_id)
|
||||
await neo4j_graph_db.close()
|
||||
neo4j_graph_db = Neo4jGraphDB(
|
||||
url=config.graph_database_url,
|
||||
username=config.graph_database_username,
|
||||
password=config.graph_database_password,
|
||||
)
|
||||
episodic_mem = neo4j_graph_db.retrieve_episodic_memory(user_id=user_id)
|
||||
episodic_mem = await neo4j_graph_db.retrieve_episodic_memory(user_id=user_id)
|
||||
logging.info("Episodic memory is %s", episodic_mem)
|
||||
await neo4j_graph_db.close()
|
||||
# public_mem = neo4j_graph_db.retrieve_public_memory(user_id=user_id)
|
||||
|
||||
|
|
@ -581,8 +582,8 @@ async def user_context_enrichment(
|
|||
context = f""" You are a memory system that uses cognitive architecture to enrich the
|
||||
LLM context and provide better query response.
|
||||
You have access to the following information:
|
||||
EPISODIC MEMORY: {episodic_mem[:200]}
|
||||
SEMANTIC MEMORY: {semantic_mem[:200]}
|
||||
EPISODIC MEMORY: {episodic_mem}
|
||||
SEMANTIC MEMORY: {semantic_mem}
|
||||
PROCEDURAL MEMORY: NULL
|
||||
SEARCH CONTEXT: The following documents provided with sources they were
|
||||
extracted from could be used to provide an answer {search_context}
|
||||
|
|
@ -764,8 +765,8 @@ async def main():
|
|||
class GraphQLQuery(BaseModel):
|
||||
query: str
|
||||
|
||||
gg = await user_query_to_graph_db(session, user_id, "How does cognitive architecture work?")
|
||||
print(gg)
|
||||
# gg = await user_query_to_graph_db(session, user_id, "How does cognitive architecture work?")
|
||||
# print(gg)
|
||||
|
||||
# def cypher_statement_correcting( input: str) -> str:
|
||||
# out = aclient.chat.completions.create(
|
||||
|
|
@ -846,10 +847,10 @@ async def main():
|
|||
# print(bb)
|
||||
|
||||
# await attach_user_to_memory(user_id=user_id, labels=['sr'], topic="PublicMemory")
|
||||
|
||||
# return_ = await user_context_enrichment(user_id=user_id, query="Koja je minimalna širina vrata za osobe sa invaliditetom?", session=session, memory_type="PublicMemory", generative_response=True)
|
||||
# print(return_)
|
||||
# aa = await relevance_feedback("I need to understand how to build a staircase in an apartment building", "PublicMemory")
|
||||
user_id = "test_user"
|
||||
return_ = await user_context_enrichment(user_id=user_id, query="I need to understand what did I do yesterday?", session=session, memory_type="SemanticMemory", generative_response=True)
|
||||
print(return_)
|
||||
# aa = await relevance_feedback("I need to understand what did I do yesterday", "PublicMemory")
|
||||
# print(aa)
|
||||
|
||||
# document_summary = {
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue