Fixes to memory component

This commit is contained in:
Vasilije 2024-02-18 20:10:08 +01:00
parent fee4982aa2
commit 0a38e09b3f
5 changed files with 36 additions and 38 deletions

View file

@ -1,11 +1,10 @@
""" This module contains the classifiers for the documents. """
import logging
from langchain.prompts import ChatPromptTemplate
import json
# TO DO, ADD ALL CLASSIFIERS HERE
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
from langchain.chains import create_extraction_chain
from langchain.chat_models import ChatOpenAI
@ -15,17 +14,19 @@ from ..database.vectordb.loaders.loaders import _document_loader
config = Config()
config.load()
OPENAI_API_KEY = config.openai_key
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
async def classify_documents(query: str, document_id: str, content: str):
"""Classify the documents based on the query and content."""
document_context = content
logging.info("This is the document context", document_context)
llm = ChatOpenAI(temperature=0, model=config.model)
prompt_classify = ChatPromptTemplate.from_template(
"""You are a summarizer and classifier. Determine what book this is and where does it belong in the output : {query}, Id: {d_id} Document context is: {context}"""
"""You are a summarizer and classifier.
Determine what book this is and where does it belong in the output :
{query}, Id: {d_id} Document context is: {context}"""
)
json_structure = [
{
@ -36,7 +37,8 @@ async def classify_documents(query: str, document_id: str, content: str):
"properties": {
"DocumentCategory": {
"type": "string",
"description": "The classification of documents in groups such as legal, medical, etc.",
"description": "The classification of documents "
"in groups such as legal, medical, etc.",
},
"Title": {
"type": "string",
@ -58,7 +60,8 @@ async def classify_documents(query: str, document_id: str, content: str):
classifier_output = await chain_filter.ainvoke(
{"query": query, "d_id": document_id, "context": str(document_context)}
)
arguments_str = classifier_output.additional_kwargs["function_call"]["arguments"]
logging.info("This is the arguments string %s", arguments_str)
arguments_dict = json.loads(arguments_str)
return arguments_dict
return arguments_dict

View file

@ -1,22 +1,16 @@
""" This module contains the function to classify a summary of a document. """
import logging
from langchain.prompts import ChatPromptTemplate
import json
# TO DO, ADD ALL CLASSIFIERS HERE
from langchain.chains import create_extraction_chain
from langchain.chat_models import ChatOpenAI
from ..config import Config
from ..database.vectordb.loaders.loaders import _document_loader
config = Config()
config.load()
OPENAI_API_KEY = config.openai_key
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
@ -24,9 +18,12 @@ from langchain.document_loaders import DirectoryLoader
async def classify_summary(query, document_summaries):
"""Classify the documents based on the query and content."""
llm = ChatOpenAI(temperature=0, model=config.model)
prompt_classify = ChatPromptTemplate.from_template(
"""You are a classifier. Determine what document are relevant for the given query: {query}, Document summaries and ids:{document_summaries}"""
"""You are a classifier. Determine what document
are relevant for the given query: {query},
Document summaries and ids:{document_summaries}"""
)
json_structure = [
{
@ -37,7 +34,8 @@ async def classify_summary(query, document_summaries):
"properties": {
"DocumentSummary": {
"type": "string",
"description": "The summary of the document and the topic it deals with.",
"description": "The summary of the document "
"and the topic it deals with.",
},
"d_id": {"type": "string", "description": "The id of the document"},
},
@ -59,4 +57,4 @@ async def classify_summary(query, document_summaries):
logging.info("This is the classifier id %s", classfier_id)
return classfier_id
return classfier_id

View file

@ -1,10 +1,10 @@
""" This module contains the classifiers for the documents. """
import logging
from langchain.prompts import ChatPromptTemplate
import json
# TO DO, ADD ALL CLASSIFIERS HERE
from langchain.chains import create_extraction_chain
from langchain.chat_models import ChatOpenAI
@ -15,14 +15,14 @@ from ..database.vectordb.loaders.loaders import _document_loader
config = Config()
config.load()
OPENAI_API_KEY = config.openai_key
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
async def classify_user_input(query, input_type):
""" Classify the user input based on the query and input type."""
llm = ChatOpenAI(temperature=0, model=config.model)
prompt_classify = ChatPromptTemplate.from_template(
"""You are a classifier. Determine with a True or False if the following input: {query}, is relevant for the following memory category: {input_type}"""
"""You are a classifier.
Determine with a True or False if the following input: {query},
is relevant for the following memory category: {input_type}"""
)
json_structure = [
{

View file

@ -1,13 +1,10 @@
import logging
""" This module contains the function to classify the user query. """
from langchain.prompts import ChatPromptTemplate
import json
# TO DO, ADD ALL CLASSIFIERS HERE
from langchain.chains import create_extraction_chain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
from ..config import Config
from ..database.vectordb.loaders.loaders import _document_loader
@ -15,14 +12,15 @@ from ..database.vectordb.loaders.loaders import _document_loader
config = Config()
config.load()
OPENAI_API_KEY = config.openai_key
from langchain.document_loaders import TextLoader
from langchain.document_loaders import DirectoryLoader
async def classify_user_query(query, context, document_types):
"""Classify the user query based on the context and document types."""
llm = ChatOpenAI(temperature=0, model=config.model)
prompt_classify = ChatPromptTemplate.from_template(
"""You are a classifier. You store user memories, thoughts and feelings. Determine if you need to use them to answer this query : {query}"""
"""You are a classifier.
You store user memories, thoughts and feelings.
Determine if you need to use them to answer this query : {query}"""
)
json_structure = [
{
@ -33,7 +31,8 @@ async def classify_user_query(query, context, document_types):
"properties": {
"UserQueryClassifier": {
"type": "bool",
"description": "The classification of documents in groups such as legal, medical, etc.",
"description": "The classification of documents "
"in groups such as legal, medical, etc.",
}
},
"required": ["UserQueryClassifier"],
@ -50,7 +49,5 @@ async def classify_user_query(query, context, document_types):
print("This is the arguments string", arguments_str)
arguments_dict = json.loads(arguments_str)
classfier_value = arguments_dict.get("UserQueryClassifier", None)
print("This is the classifier value", classfier_value)
return classfier_value

View file

@ -4,7 +4,7 @@ import networkx as nx
class NetworkXGraphDB:
def __init__(self, filename="networkx_graph.pkl"):
def __init__(self, filename="cognee_graph.pkl"):
self.filename = filename
try:
self.graph = self.load_graph() # Attempt to load an existing graph