diff --git a/cognitive_architecture/database/graphdb/graph.py b/cognitive_architecture/database/graphdb/graph.py index a3c1dc480..d75e92afc 100644 --- a/cognitive_architecture/database/graphdb/graph.py +++ b/cognitive_architecture/database/graphdb/graph.py @@ -1004,7 +1004,7 @@ async def unlink_user_from_another( logging.error(f"Error disconnecting user nodes: {e}") raise -from .networkx_graph import NetworkXGraphDB +from .networkx.networkx_graph import NetworkXGraphDB class GraphDBFactory: diff --git a/cognitive_architecture/database/graphdb/networkx_graph.py b/cognitive_architecture/database/graphdb/networkx/networkx_graph.py similarity index 100% rename from cognitive_architecture/database/graphdb/networkx_graph.py rename to cognitive_architecture/database/graphdb/networkx/networkx_graph.py diff --git a/main.py b/main.py index 8bace3c69..06da08033 100644 --- a/main.py +++ b/main.py @@ -461,14 +461,15 @@ async def user_context_enrichment( # await user_query_to_graph_db(session, user_id, query) - semantic_mem = neo4j_graph_db.retrieve_semantic_memory(user_id=user_id) + semantic_mem = await neo4j_graph_db.retrieve_semantic_memory(user_id=user_id) await neo4j_graph_db.close() neo4j_graph_db = Neo4jGraphDB( url=config.graph_database_url, username=config.graph_database_username, password=config.graph_database_password, ) - episodic_mem = neo4j_graph_db.retrieve_episodic_memory(user_id=user_id) + episodic_mem = await neo4j_graph_db.retrieve_episodic_memory(user_id=user_id) + logging.info("Episodic memory is %s", episodic_mem) await neo4j_graph_db.close() # public_mem = neo4j_graph_db.retrieve_public_memory(user_id=user_id) @@ -581,8 +582,8 @@ async def user_context_enrichment( context = f""" You are a memory system that uses cognitive architecture to enrich the LLM context and provide better query response. You have access to the following information: - EPISODIC MEMORY: {episodic_mem[:200]} - SEMANTIC MEMORY: {semantic_mem[:200]} + EPISODIC MEMORY: {episodic_mem} + SEMANTIC MEMORY: {semantic_mem} PROCEDURAL MEMORY: NULL SEARCH CONTEXT: The following documents provided with sources they were extracted from could be used to provide an answer {search_context} @@ -764,8 +765,8 @@ async def main(): class GraphQLQuery(BaseModel): query: str - gg = await user_query_to_graph_db(session, user_id, "How does cognitive architecture work?") - print(gg) + # gg = await user_query_to_graph_db(session, user_id, "How does cognitive architecture work?") + # print(gg) # def cypher_statement_correcting( input: str) -> str: # out = aclient.chat.completions.create( @@ -846,10 +847,10 @@ async def main(): # print(bb) # await attach_user_to_memory(user_id=user_id, labels=['sr'], topic="PublicMemory") - - # return_ = await user_context_enrichment(user_id=user_id, query="Koja je minimalna širina vrata za osobe sa invaliditetom?", session=session, memory_type="PublicMemory", generative_response=True) - # print(return_) - # aa = await relevance_feedback("I need to understand how to build a staircase in an apartment building", "PublicMemory") + user_id = "test_user" + return_ = await user_context_enrichment(user_id=user_id, query="I need to understand what did I do yesterday?", session=session, memory_type="SemanticMemory", generative_response=True) + print(return_) + # aa = await relevance_feedback("I need to understand what did I do yesterday", "PublicMemory") # print(aa) # document_summary = {