Add S3 storage client and API routes for document management:
- Implement s3_routes.py with file upload, download, delete endpoints
- Enhance s3_client.py with improved error handling and operations
- Add S3 browser UI component with file viewing and management
- Implement FileViewer and PDFViewer components for storage preview
- Add Resizable and Sheet UI components for layout control
Update backend infrastructure:
- Add bulk operations and parameterized queries to postgres_impl.py
- Enhance document routes with improved type hints
- Update API server registration for new S3 routes
- Refine upload routes and utility functions
Modernize web UI:
- Integrate S3 browser into main application layout
- Update localization files for storage UI strings
- Add storage settings to application configuration
- Sync package dependencies and lock files
Remove obsolete reproduction script:
- Delete reproduce_citation.py (replaced by test suite)
Update configuration:
- Enhance pyrightconfig.json for stricter type checking
Add extensive test suites for API routes and utilities:
- Implement test_search_routes.py (406 lines) for search endpoint validation
- Implement test_upload_routes.py (724 lines) for document upload workflows
- Implement test_s3_client.py (618 lines) for S3 storage operations
- Implement test_citation_utils.py (352 lines) for citation extraction
- Implement test_chunking.py (216 lines) for text chunking validation
Add S3 storage client implementation:
- Create lightrag/storage/s3_client.py with S3 operations
- Add storage module initialization with exports
- Integrate S3 client with document upload handling
Enhance API routes and core functionality:
- Add search_routes.py with full-text and graph search endpoints
- Add upload_routes.py with multipart document upload support
- Update operate.py with bulk operations and health checks
- Enhance postgres_impl.py with bulk upsert and parameterized queries
- Update lightrag_server.py to register new API routes
- Improve utils.py with citation and formatting utilities
Update dependencies and configuration:
- Add S3 and test dependencies to pyproject.toml
- Update docker-compose.test.yml for testing environment
- Sync uv.lock with new dependencies
Apply code quality improvements across all modified files:
- Add type hints to function signatures
- Update imports and router initialization
- Fix logging and error handling
Fix logging output in evaluation test harness and examples:
- Replace print() statements with logger calls in e2e_test_harness.py
- Update copy_llm_cache_to_another_storage.py to use logger instead of print
- Remove redundant logging configuration in copy_llm_cache_to_another_storage.py
Fix path handling and typos:
- Correct makedirs() call in lightrag_openai_demo.py to create log_dir directly
- Update constants.py comments to clarify SOURCE_IDS_LIMIT_METHOD options
- Remove duplicate return statement in utils.py normalize_extracted_info()
- Fix error string formatting in chroma_impl.py with !s conversion
- Remove unused pipmaster import from chroma_impl.py
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
- Precompile regex pattern at module level
- Zero-copy path for clean strings
- Use C-level regex for performance
- Remove deprecated _sanitize_json_data
- Fast detection for common case
- Fast path for clean data (no sanitization)
- Slow path sanitizes during encoding
- Reload shared memory after sanitization
- Custom encoder avoids deep copies
- Comprehensive test coverage
• Add _sanitize_json_data helper function
• Recursively clean strings in data
• Sanitize before JSON serialization
• Prevent encoding-related crashes
• Use existing sanitize_text_for_encoding
- Add entity_chunks & relation_chunks storage
- Implement KEEP/FIFO limit strategies
- Update env.example with new settings
- Add migration for chunk tracking data
- Support all KV storage
- Add new aquery_llm/query_llm methods providing structured responses
- Consolidate /query and /query/stream endpoints to use unified aquery_llm
- Optimize cache handling by moving cache checks before LLM calls
- Remove processing_info generation from _convert_to_user_format function
- Move all metadata generation (keywords, processing_info) to kg_query and naive_query functions
- Simplify _convert_to_user_format to focus only on data format conversion