Add mandatory dimension parameter handling for Jina API compliance
This commit is contained in:
parent
d8a6355e41
commit
c14f25b7f8
3 changed files with 36 additions and 26 deletions
|
|
@ -244,9 +244,10 @@ OLLAMA_LLM_NUM_CTX=32768
|
|||
# EMBEDDING_TIMEOUT=30
|
||||
|
||||
### Control whether to send embedding_dim parameter to embedding API
|
||||
### Set to 'true' to enable dynamic dimension adjustment (only works for OpenAI and Jina)
|
||||
### Set to 'false' (default) to disable sending dimension parameter
|
||||
### Note: This is automatically ignored for backends that don't support dimension parameter
|
||||
### IMPORTANT: Jina ALWAYS sends dimension parameter (API requirement) - this setting is ignored for Jina
|
||||
### For OpenAI: Set to 'true' to enable dynamic dimension adjustment
|
||||
### For OpenAI: Set to 'false' (default) to disable sending dimension parameter
|
||||
### Note: Automatically ignored for backends that don't support dimension parameter (e.g., Ollama)
|
||||
# EMBEDDING_SEND_DIM=false
|
||||
|
||||
EMBEDDING_BINDING=ollama
|
||||
|
|
|
|||
|
|
@ -643,9 +643,7 @@ def create_app(args):
|
|||
elif binding == "jina":
|
||||
from lightrag.llm.jina import jina_embed
|
||||
|
||||
return await jina_embed(
|
||||
texts, base_url=host, api_key=api_key
|
||||
)
|
||||
return await jina_embed(texts, base_url=host, api_key=api_key)
|
||||
else: # openai and compatible
|
||||
from lightrag.llm.openai import openai_embed
|
||||
|
||||
|
|
@ -691,7 +689,7 @@ def create_app(args):
|
|||
|
||||
# Create embedding function with optimized configuration
|
||||
import inspect
|
||||
|
||||
|
||||
# Create the optimized embedding function
|
||||
optimized_embedding_func = create_optimized_embedding_function(
|
||||
config_cache=config_cache,
|
||||
|
|
@ -701,27 +699,33 @@ def create_app(args):
|
|||
api_key=args.embedding_binding_api_key,
|
||||
args=args, # Pass args object for fallback option generation
|
||||
)
|
||||
|
||||
|
||||
# Check environment variable for sending dimensions
|
||||
embedding_send_dim = os.getenv("EMBEDDING_SEND_DIM", "false").lower() == "true"
|
||||
|
||||
|
||||
# Check if the function signature has embedding_dim parameter
|
||||
# Note: Since optimized_embedding_func is an async function, inspect its signature
|
||||
sig = inspect.signature(optimized_embedding_func)
|
||||
has_embedding_dim_param = 'embedding_dim' in sig.parameters
|
||||
|
||||
# Determine send_dimensions value
|
||||
# Only send dimensions if both conditions are met:
|
||||
# 1. EMBEDDING_SEND_DIM environment variable is true
|
||||
# 2. The function has embedding_dim parameter
|
||||
send_dimensions = embedding_send_dim and has_embedding_dim_param
|
||||
|
||||
has_embedding_dim_param = "embedding_dim" in sig.parameters
|
||||
|
||||
# Determine send_dimensions value based on binding type
|
||||
# Jina REQUIRES dimension parameter (forced to True)
|
||||
# OpenAI and others: controlled by EMBEDDING_SEND_DIM environment variable
|
||||
if args.embedding_binding == "jina":
|
||||
# Jina API requires dimension parameter - always send it
|
||||
send_dimensions = has_embedding_dim_param
|
||||
dimension_control = "forced (Jina API requirement)"
|
||||
else:
|
||||
# For OpenAI and other bindings, respect EMBEDDING_SEND_DIM setting
|
||||
send_dimensions = embedding_send_dim and has_embedding_dim_param
|
||||
dimension_control = f"env_var={embedding_send_dim}"
|
||||
|
||||
logger.info(
|
||||
f"Embedding configuration: send_dimensions={send_dimensions} "
|
||||
f"(env_var={embedding_send_dim}, has_param={has_embedding_dim_param}, "
|
||||
f"({dimension_control}, has_param={has_embedding_dim_param}, "
|
||||
f"binding={args.embedding_binding})"
|
||||
)
|
||||
|
||||
|
||||
# Create EmbeddingFunc with send_dimensions attribute
|
||||
embedding_func = EmbeddingFunc(
|
||||
embedding_dim=args.embedding_dim,
|
||||
|
|
|
|||
|
|
@ -353,24 +353,29 @@ class EmbeddingFunc:
|
|||
embedding_dim: int
|
||||
func: callable
|
||||
max_token_size: int | None = None # deprecated keep it for compatible only
|
||||
send_dimensions: bool = False # Control whether to send embedding_dim to the function
|
||||
send_dimensions: bool = (
|
||||
False # Control whether to send embedding_dim to the function
|
||||
)
|
||||
|
||||
async def __call__(self, *args, **kwargs) -> np.ndarray:
|
||||
# Only inject embedding_dim when send_dimensions is True
|
||||
if self.send_dimensions:
|
||||
# Check if user provided embedding_dim parameter
|
||||
if 'embedding_dim' in kwargs:
|
||||
user_provided_dim = kwargs['embedding_dim']
|
||||
if "embedding_dim" in kwargs:
|
||||
user_provided_dim = kwargs["embedding_dim"]
|
||||
# If user's value differs from class attribute, output warning
|
||||
if user_provided_dim is not None and user_provided_dim != self.embedding_dim:
|
||||
if (
|
||||
user_provided_dim is not None
|
||||
and user_provided_dim != self.embedding_dim
|
||||
):
|
||||
logger.warning(
|
||||
f"Ignoring user-provided embedding_dim={user_provided_dim}, "
|
||||
f"using declared embedding_dim={self.embedding_dim} from decorator"
|
||||
)
|
||||
|
||||
|
||||
# Inject embedding_dim from decorator
|
||||
kwargs['embedding_dim'] = self.embedding_dim
|
||||
|
||||
kwargs["embedding_dim"] = self.embedding_dim
|
||||
|
||||
return await self.func(*args, **kwargs)
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue