refactor: centralize metadata generation in query functions

- Remove processing_info generation from _convert_to_user_format function
- Move all metadata generation (keywords, processing_info) to kg_query and naive_query functions
- Simplify _convert_to_user_format to focus only on data format conversion
This commit is contained in:
yangdx 2025-09-15 03:11:07 +08:00
parent c0d5abba6b
commit e71229698d
2 changed files with 70 additions and 52 deletions

View file

@ -3076,8 +3076,6 @@ async def _build_llm_context(
global_config: dict[str, str],
chunk_tracking: dict = None,
return_raw_data: bool = False,
hl_keywords: list[str] = None,
ll_keywords: list[str] = None,
) -> str | tuple[str, dict[str, Any]]:
"""
Build the final LLM context string with token processing.
@ -3239,9 +3237,10 @@ async def _build_llm_context(
if return_raw_data:
# Return empty raw data structure when no entities/relations
empty_raw_data = _convert_to_user_format(
[], [], [], query_param.mode,
hl_keywords=hl_keywords,
ll_keywords=ll_keywords,
[],
[],
[],
query_param.mode,
)
return None, empty_raw_data
else:
@ -3297,16 +3296,18 @@ async def _build_llm_context(
# If final data is requested, return both context and complete data structure
if return_raw_data:
logger.debug(f"[_build_llm_context] Converting to user format: {len(entities_context)} entities, {len(relations_context)} relations, {len(truncated_chunks)} chunks")
final_data = _convert_to_user_format(
entities_context,
relations_context,
truncated_chunks,
query_param.mode,
hl_keywords=hl_keywords,
ll_keywords=ll_keywords,
logger.debug(
f"[_build_llm_context] Converting to user format: {len(entities_context)} entities, {len(relations_context)} relations, {len(truncated_chunks)} chunks"
)
final_data = _convert_to_user_format(
entities_context,
relations_context,
truncated_chunks,
query_param.mode,
)
logger.debug(
f"[_build_llm_context] Final data after conversion: {len(final_data.get('entities', []))} entities, {len(final_data.get('relationships', []))} relationships, {len(final_data.get('chunks', []))} chunks"
)
logger.debug(f"[_build_llm_context] Final data after conversion: {len(final_data.get('entities', []))} entities, {len(final_data.get('relationships', []))} relationships, {len(final_data.get('chunks', []))} chunks")
return result, final_data
else:
return result
@ -3383,7 +3384,7 @@ async def _build_query_context(
return None
# Stage 4: Build final LLM context with dynamic token processing
if return_raw_data:
# Convert keywords strings to lists
hl_keywords_list = hl_keywords.split(", ") if hl_keywords else []
@ -3399,12 +3400,36 @@ async def _build_query_context(
global_config=text_chunks_db.global_config,
chunk_tracking=search_result["chunk_tracking"],
return_raw_data=True,
hl_keywords=hl_keywords_list,
ll_keywords=ll_keywords_list,
)
logger.debug(f"[_build_query_context] Context length: {len(context) if context else 0}")
logger.debug(f"[_build_query_context] Raw data entities: {len(raw_data.get('entities', []))}, relationships: {len(raw_data.get('relationships', []))}, chunks: {len(raw_data.get('chunks', []))}")
# Convert keywords strings to lists and add complete metadata to raw_data
hl_keywords_list = hl_keywords.split(", ") if hl_keywords else []
ll_keywords_list = ll_keywords.split(", ") if ll_keywords else []
# Add complete metadata to raw_data
raw_data["metadata"]["keywords"] = {
"high_level": hl_keywords_list,
"low_level": ll_keywords_list,
}
raw_data["metadata"]["processing_info"] = {
"total_entities_found": len(search_result.get("final_entities", [])),
"total_relations_found": len(search_result.get("final_relations", [])),
"entities_after_truncation": len(
truncation_result.get("filtered_entities", [])
),
"relations_after_truncation": len(
truncation_result.get("filtered_relations", [])
),
"merged_chunks_count": len(merged_chunks),
"final_chunks_count": len(raw_data.get("chunks", [])),
}
logger.debug(
f"[_build_query_context] Context length: {len(context) if context else 0}"
)
logger.debug(
f"[_build_query_context] Raw data entities: {len(raw_data.get('entities', []))}, relationships: {len(raw_data.get('relationships', []))}, chunks: {len(raw_data.get('chunks', []))}"
)
return context, raw_data
else:
# Normal context building (existing logic)
@ -4135,15 +4160,23 @@ async def naive_query(
# If only raw data is requested, return it directly
if return_raw_data:
# Build raw data structure for naive mode using processed chunks
raw_data = {
"entities": [], # naive mode has no entities
"relationships": [], # naive mode has no relationships
"chunks": processed_chunks, # Use processed chunks (same as LLM)
"metadata": {
"query_mode": "naive",
"keywords": {"high_level": [], "low_level": []},
},
raw_data = _convert_to_user_format(
[], # naive mode has no entities
[], # naive mode has no relationships
processed_chunks,
"naive",
)
# Add complete metadata for naive mode
raw_data["metadata"]["keywords"] = {
"high_level": [], # naive mode has no keyword extraction
"low_level": [], # naive mode has no keyword extraction
}
raw_data["metadata"]["processing_info"] = {
"total_chunks_found": len(chunks),
"final_chunks_count": len(processed_chunks),
}
return raw_data
# Build text_units_context from processed chunks

View file

@ -2718,11 +2718,6 @@ def _convert_to_user_format(
relations_context: list[dict],
final_chunks: list[dict],
query_mode: str,
hl_keywords: list[str] = None,
ll_keywords: list[str] = None,
search_result: dict = None,
truncation_result: dict = None,
merged_chunks: list[dict] = None,
) -> dict[str, Any]:
"""Convert internal data format to user-friendly format"""
@ -2764,31 +2759,21 @@ def _convert_to_user_format(
"file_path": chunk.get("file_path", "unknown_source"),
"chunk_id": chunk.get("chunk_id", ""),
}
formatted_chunks.append(chunk_data)
formatted_chunks.append(chunk_data)
logger.debug(f"[_convert_to_user_format] Formatted {len(formatted_chunks)}/{len(final_chunks)} chunks")
logger.debug(
f"[_convert_to_user_format] Formatted {len(formatted_chunks)}/{len(final_chunks)} chunks"
)
# Build metadata with processing info
# Build basic metadata (metadata details will be added by calling functions)
metadata = {
"query_mode": query_mode,
"keywords": {"high_level": hl_keywords or [], "low_level": ll_keywords or []},
"keywords": {
"high_level": [],
"low_level": [],
}, # Placeholder, will be set by calling functions
}
# Add processing info if available
if search_result and truncation_result and merged_chunks is not None:
metadata["processing_info"] = {
"total_entities_found": len(search_result.get("final_entities", [])),
"total_relations_found": len(search_result.get("final_relations", [])),
"entities_after_truncation": len(
truncation_result.get("filtered_entities", [])
),
"relations_after_truncation": len(
truncation_result.get("filtered_relations", [])
),
"merged_chunks_count": len(merged_chunks),
"final_chunks_count": len(final_chunks),
}
return {
"entities": formatted_entities,
"relationships": formatted_relationships,