Update RAG evaluation metrics to use class instances instead of objects
• Import metric classes not instances • Instantiate metrics with () syntax
This commit is contained in:
parent
7abc687742
commit
4e4b8d7e25
1 changed files with 8 additions and 8 deletions
|
|
@ -52,10 +52,10 @@ try:
|
||||||
from datasets import Dataset
|
from datasets import Dataset
|
||||||
from ragas import evaluate
|
from ragas import evaluate
|
||||||
from ragas.metrics import (
|
from ragas.metrics import (
|
||||||
answer_relevancy,
|
AnswerRelevancy,
|
||||||
context_precision,
|
ContextPrecision,
|
||||||
context_recall,
|
ContextRecall,
|
||||||
faithfulness,
|
Faithfulness,
|
||||||
)
|
)
|
||||||
from ragas.llms import LangchainLLMWrapper
|
from ragas.llms import LangchainLLMWrapper
|
||||||
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
||||||
|
|
@ -399,10 +399,10 @@ class RAGEvaluator:
|
||||||
eval_results = evaluate(
|
eval_results = evaluate(
|
||||||
dataset=eval_dataset,
|
dataset=eval_dataset,
|
||||||
metrics=[
|
metrics=[
|
||||||
faithfulness,
|
Faithfulness(),
|
||||||
answer_relevancy,
|
AnswerRelevancy(),
|
||||||
context_recall,
|
ContextRecall(),
|
||||||
context_precision,
|
ContextPrecision(),
|
||||||
],
|
],
|
||||||
llm=self.eval_llm,
|
llm=self.eval_llm,
|
||||||
embeddings=self.eval_embeddings,
|
embeddings=self.eval_embeddings,
|
||||||
|
|
|
||||||
Loading…
Add table
Reference in a new issue