Add comprehensive configuration and compatibility fixes for RAGAS

- Fix RAGAS LLM wrapper compatibility
- Add concurrency control for rate limits
- Add eval env vars for model config
- Improve error handling and logging
- Update documentation with examples
This commit is contained in:
yangdx 2025-11-04 14:39:27 +08:00
parent 72db042667
commit 7abc687742
4 changed files with 438 additions and 70 deletions

View file

@ -394,3 +394,26 @@ MEMGRAPH_USERNAME=
MEMGRAPH_PASSWORD=
MEMGRAPH_DATABASE=memgraph
# MEMGRAPH_WORKSPACE=forced_workspace_name
############################
### Evaluation Configuration
############################
### RAGAS evaluation models (used for RAG quality assessment)
### Default uses OpenAI models for evaluation
# EVAL_LLM_MODEL=gpt-4.1
# EVAL_EMBEDDING_MODEL=text-embedding-3-large
### API key for evaluation (fallback to OPENAI_API_KEY if not set)
# EVAL_LLM_BINDING_API_KEY=your_api_key
### Custom endpoint for evaluation models (optional, for OpenAI-compatible services)
# EVAL_LLM_BINDING_HOST=https://api.openai.com/v1
### Evaluation concurrency and rate limiting
### Number of concurrent test case evaluations (default: 1 for serial evaluation)
### Lower values reduce API rate limit issues but increase evaluation time
# EVAL_MAX_CONCURRENT=3
### TOP_K query parameter of LightRAG (default: 10)
### Number of entities or relations retrieved from KG
# EVAL_QUERY_TOP_K=10
### LLM request retry and timeout settings for evaluation
# EVAL_LLM_MAX_RETRIES=5
# EVAL_LLM_TIMEOUT=120

View file

@ -89,6 +89,81 @@ results/
---
## ⚙️ Configuration
### Environment Variables
The evaluation framework supports customization through environment variables:
| Variable | Default | Description |
|----------|---------|-------------|
| `EVAL_LLM_MODEL` | `gpt-4o-mini` | LLM model used for RAGAS evaluation |
| `EVAL_EMBEDDING_MODEL` | `text-embedding-3-small` | Embedding model for evaluation |
| `EVAL_LLM_BINDING_API_KEY` | (falls back to `OPENAI_API_KEY`) | API key for evaluation models |
| `EVAL_LLM_BINDING_HOST` | (optional) | Custom endpoint URL for OpenAI-compatible services |
| `EVAL_MAX_CONCURRENT` | `1` | Number of concurrent test case evaluations (1=serial) |
| `EVAL_QUERY_TOP_K` | `10` | Number of documents to retrieve per query |
| `EVAL_LLM_MAX_RETRIES` | `5` | Maximum LLM request retries |
| `EVAL_LLM_TIMEOUT` | `120` | LLM request timeout in seconds |
### Usage Examples
**Default Configuration (OpenAI):**
```bash
export OPENAI_API_KEY=sk-xxx
python lightrag/evaluation/eval_rag_quality.py
```
**Custom Model:**
```bash
export OPENAI_API_KEY=sk-xxx
export EVAL_LLM_MODEL=gpt-4.1
export EVAL_EMBEDDING_MODEL=text-embedding-3-large
python lightrag/evaluation/eval_rag_quality.py
```
**OpenAI-Compatible Endpoint:**
```bash
export EVAL_LLM_BINDING_API_KEY=your-custom-key
export EVAL_LLM_BINDING_HOST=https://api.openai.com/v1
export EVAL_LLM_MODEL=qwen-plus
python lightrag/evaluation/eval_rag_quality.py
```
### Concurrency Control & Rate Limiting
The evaluation framework includes built-in concurrency control to prevent API rate limiting issues:
**Why Concurrency Control Matters:**
- RAGAS internally makes many concurrent LLM calls for each test case
- Context Precision metric calls LLM once per retrieved document
- Without control, this can easily exceed API rate limits
**Default Configuration (Conservative):**
```bash
EVAL_MAX_CONCURRENT=1 # Serial evaluation (one test at a time)
EVAL_QUERY_TOP_K=10 # OP_K query parameter of LightRAG
EVAL_LLM_MAX_RETRIES=5 # Retry failed requests 5 times
EVAL_LLM_TIMEOUT=180 # 2-minute timeout per request
```
**If You Have Higher API Quotas:**
```bash
EVAL_MAX_CONCURRENT=2 # Evaluate 2 tests in parallel
EVAL_QUERY_TOP_K=20 # OP_K query parameter of LightRAG
```
**Common Issues and Solutions:**
| Issue | Solution |
|-------|----------|
| **Warning: "LM returned 1 generations instead of 3"** | Reduce `EVAL_MAX_CONCURRENT` to 1 or decrease `EVAL_QUERY_TOP_K` |
| **Context Precision returns NaN** | Lower `EVAL_QUERY_TOP_K` to reduce LLM calls per test case |
| **Rate limit errors (429)** | Increase `EVAL_LLM_MAX_RETRIES` and decrease `EVAL_MAX_CONCURRENT` |
| **Request timeouts** | Increase `EVAL_LLM_TIMEOUT` to 180 or higher |
---
## 📝 Test Dataset
`sample_dataset.json` contains 3 generic questions about LightRAG. Replace with questions matching YOUR indexed documents.
@ -166,6 +241,50 @@ results/
pip install ragas datasets
```
### "Warning: LM returned 1 generations instead of requested 3" or Context Precision NaN
**Cause**: This warning indicates API rate limiting or concurrent request overload:
- RAGAS makes multiple LLM calls per test case (faithfulness, relevancy, recall, precision)
- Context Precision calls LLM once per retrieved document (with `EVAL_QUERY_TOP_K=10`, that's 10 calls)
- Concurrent evaluation multiplies these calls: `EVAL_MAX_CONCURRENT × LLM calls per test`
**Solutions** (in order of effectiveness):
1. **Serial Evaluation** (Default):
```bash
export EVAL_MAX_CONCURRENT=1
python lightrag/evaluation/eval_rag_quality.py
```
2. **Reduce Retrieved Documents**:
```bash
export EVAL_QUERY_TOP_K=5 # Halves Context Precision LLM calls
python lightrag/evaluation/eval_rag_quality.py
```
3. **Increase Retry & Timeout**:
```bash
export EVAL_LLM_MAX_RETRIES=10
export EVAL_LLM_TIMEOUT=180
python lightrag/evaluation/eval_rag_quality.py
```
4. **Use Higher Quota API** (if available):
- Upgrade to OpenAI Tier 2+ for higher RPM limits
- Use self-hosted OpenAI-compatible service with no rate limits
### "AttributeError: 'InstructorLLM' object has no attribute 'agenerate_prompt'" or NaN results
This error occurs with RAGAS 0.3.x when LLM and Embeddings are not explicitly configured. The evaluation framework now handles this automatically by:
- Using environment variables to configure evaluation models
- Creating proper LLM and Embeddings instances for RAGAS
**Solution**: Ensure you have set one of the following:
- `OPENAI_API_KEY` environment variable (default)
- `EVAL_LLM_BINDING_API_KEY` for custom API key
The framework will automatically configure the evaluation models.
### "No sample_dataset.json found"
Make sure you're running from the project root:

View file

@ -16,6 +16,12 @@ Usage:
Results are saved to: lightrag/evaluation/results/
- results_YYYYMMDD_HHMMSS.csv (CSV export for analysis)
- results_YYYYMMDD_HHMMSS.json (Full results with details)
Note on Custom OpenAI-Compatible Endpoints:
This script uses bypass_n=True mode for answer_relevancy metric to ensure
compatibility with custom endpoints that may not support OpenAI's 'n' parameter
for multiple completions. This generates multiple outputs through repeated prompts
instead, maintaining evaluation quality while supporting broader endpoint compatibility.
"""
import asyncio
@ -51,12 +57,16 @@ try:
context_recall,
faithfulness,
)
from ragas.llms import LangchainLLMWrapper
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
RAGAS_AVAILABLE = True
except ImportError:
RAGAS_AVAILABLE = False
Dataset = None
evaluate = None
LangchainLLMWrapper = None
CONNECT_TIMEOUT_SECONDS = 180.0
@ -81,10 +91,15 @@ class RAGEvaluator:
rag_api_url: Base URL of LightRAG API (e.g., http://localhost:9621)
If None, will try to read from environment or use default
Environment Variables:
EVAL_LLM_MODEL: LLM model for evaluation (default: gpt-4o-mini)
EVAL_EMBEDDING_MODEL: Embedding model for evaluation (default: text-embedding-3-small)
EVAL_LLM_BINDING_API_KEY: API key for evaluation models (fallback to OPENAI_API_KEY)
EVAL_LLM_BINDING_HOST: Custom endpoint URL for evaluation models (optional)
Raises:
ImportError: If ragas or datasets packages are not installed
ValueError: If LLM_BINDING is not set to 'openai'
EnvironmentError: If LLM_BINDING_API_KEY is not set
EnvironmentError: If EVAL_LLM_BINDING_API_KEY and OPENAI_API_KEY are both not set
"""
# Validate RAGAS dependencies are installed
if not RAGAS_AVAILABLE:
@ -93,25 +108,56 @@ class RAGEvaluator:
"Install with: pip install ragas datasets"
)
# Validate LLM_BINDING is set to openai (required for RAGAS)
llm_binding = os.getenv("LLM_BINDING", "").lower()
if llm_binding != "openai":
raise ValueError(
f"LLM_BINDING must be set to 'openai' for RAGAS evaluation. "
f"Current value: '{llm_binding or '(not set)'}'"
)
# Validate LLM_BINDING_API_KEY exists
llm_binding_key = os.getenv("LLM_BINDING_API_KEY")
if not llm_binding_key:
# Configure evaluation models (for RAGAS scoring)
eval_api_key = os.getenv("EVAL_LLM_BINDING_API_KEY") or os.getenv(
"OPENAI_API_KEY"
)
if not eval_api_key:
raise EnvironmentError(
"LLM_BINDING_API_KEY environment variable is not set. "
"This is required for RAGAS evaluation."
"EVAL_LLM_BINDING_API_KEY or OPENAI_API_KEY is required for evaluation. "
"Set EVAL_LLM_BINDING_API_KEY to use a custom API key, "
"or ensure OPENAI_API_KEY is set."
)
# Set OPENAI_API_KEY from LLM_BINDING_API_KEY for RAGAS
os.environ["OPENAI_API_KEY"] = llm_binding_key
logger.info("✅ LLM_BINDING: openai")
eval_model = os.getenv("EVAL_LLM_MODEL", "gpt-4.1")
eval_embedding_model = os.getenv(
"EVAL_EMBEDDING_MODEL", "text-embedding-3-large"
)
eval_base_url = os.getenv("EVAL_LLM_BINDING_HOST")
# Create LLM and Embeddings instances for RAGAS
llm_kwargs = {
"model": eval_model,
"api_key": eval_api_key,
"max_retries": int(os.getenv("EVAL_LLM_MAX_RETRIES", "5")),
"request_timeout": int(os.getenv("EVAL_LLM_TIMEOUT", "180")),
}
embedding_kwargs = {"model": eval_embedding_model, "api_key": eval_api_key}
if eval_base_url:
llm_kwargs["base_url"] = eval_base_url
embedding_kwargs["base_url"] = eval_base_url
# Create base LangChain LLM
base_llm = ChatOpenAI(**llm_kwargs)
self.eval_embeddings = OpenAIEmbeddings(**embedding_kwargs)
# Wrap LLM with LangchainLLMWrapper and enable bypass_n mode for custom endpoints
# This ensures compatibility with endpoints that don't support the 'n' parameter
# by generating multiple outputs through repeated prompts instead of using 'n' parameter
try:
self.eval_llm = LangchainLLMWrapper(
langchain_llm=base_llm,
bypass_n=True, # Enable bypass_n to avoid passing 'n' to OpenAI API
)
logger.debug("Successfully configured bypass_n mode for LLM wrapper")
except Exception as e:
logger.warning(
"Could not configure LangchainLLMWrapper with bypass_n: %s. "
"Using base LLM directly, which may cause warnings with custom endpoints.",
e,
)
self.eval_llm = base_llm
if test_dataset_path is None:
test_dataset_path = Path(__file__).parent / "sample_dataset.json"
@ -127,6 +173,56 @@ class RAGEvaluator:
# Load test dataset
self.test_cases = self._load_test_dataset()
# Store configuration values for display
self.eval_model = eval_model
self.eval_embedding_model = eval_embedding_model
self.eval_base_url = eval_base_url
self.eval_max_retries = llm_kwargs["max_retries"]
self.eval_timeout = llm_kwargs["request_timeout"]
# Display configuration
self._display_configuration()
def _display_configuration(self):
"""Display all evaluation configuration settings"""
logger.info("")
logger.info("%s", "=" * 70)
logger.info("🔧 EVALUATION CONFIGURATION")
logger.info("%s", "=" * 70)
logger.info("")
logger.info("Evaluation Models:")
logger.info(" • LLM Model: %s", self.eval_model)
logger.info(" • Embedding Model: %s", self.eval_embedding_model)
if self.eval_base_url:
logger.info(" • Custom Endpoint: %s", self.eval_base_url)
logger.info(" • Bypass N-Parameter: Enabled (for compatibility)")
else:
logger.info(" • Endpoint: OpenAI Official API")
logger.info("")
logger.info("Concurrency & Rate Limiting:")
max_concurrent = int(os.getenv("EVAL_MAX_CONCURRENT", "1"))
query_top_k = int(os.getenv("EVAL_QUERY_TOP_K", "10"))
logger.info(
" • Max Concurrent: %s %s",
max_concurrent,
"(serial evaluation)" if max_concurrent == 1 else "parallel evaluations",
)
logger.info(" • Query Top-K: %s Entities/Relations", query_top_k)
logger.info(" • LLM Max Retries: %s", self.eval_max_retries)
logger.info(" • LLM Timeout: %s seconds", self.eval_timeout)
logger.info("")
logger.info("Test Configuration:")
logger.info(" • Total Test Cases: %s", len(self.test_cases))
logger.info(" • Test Dataset: %s", self.test_dataset_path.name)
logger.info(" • LightRAG API: %s", self.rag_api_url)
logger.info(" • Results Directory: %s", self.results_dir.name)
logger.info("%s", "=" * 70)
logger.info("")
def _load_test_dataset(self) -> List[Dict[str, str]]:
"""Load test cases from JSON file"""
if not self.test_dataset_path.exists():
@ -163,12 +259,12 @@ class RAGEvaluator:
"include_references": True,
"include_chunk_content": True, # NEW: Request chunk content in references
"response_type": "Multiple Paragraphs",
"top_k": 10,
"top_k": int(os.getenv("EVAL_QUERY_TOP_K", "10")),
}
# Get API key from environment for authentication
api_key = os.getenv("LIGHTRAG_API_KEY")
# Prepare headers with optional authentication
headers = {}
if api_key:
@ -244,6 +340,7 @@ class RAGEvaluator:
test_case: Dict[str, str],
semaphore: asyncio.Semaphore,
client: httpx.AsyncClient,
progress_counter: Dict[str, int],
) -> Dict[str, Any]:
"""
Evaluate a single test case with concurrency control
@ -253,34 +350,39 @@ class RAGEvaluator:
test_case: Test case dictionary with question and ground_truth
semaphore: Semaphore to control concurrency
client: Shared httpx AsyncClient for connection pooling
progress_counter: Shared dictionary for progress tracking
Returns:
Evaluation result dictionary
"""
total_cases = len(self.test_cases)
async with semaphore:
question = test_case["question"]
ground_truth = test_case["ground_truth"]
logger.info("[%s/%s] Evaluating: %s...", idx, total_cases, question[:60])
# Generate RAG response by calling actual LightRAG API
rag_response = await self.generate_rag_response(
question=question, client=client
)
try:
rag_response = await self.generate_rag_response(
question=question, client=client
)
except Exception as e:
logger.error("Error generating response for test %s: %s", idx, str(e))
progress_counter["completed"] += 1
return {
"test_number": idx,
"question": question,
"error": str(e),
"metrics": {},
"ragas_score": 0,
"timestamp": datetime.now().isoformat(),
}
# *** CRITICAL FIX: Use actual retrieved contexts, NOT ground_truth ***
retrieved_contexts = rag_response["contexts"]
# DEBUG: Print what was actually retrieved
logger.debug("📝 Retrieved %s contexts", len(retrieved_contexts))
if retrieved_contexts:
logger.debug(
"📄 First context preview: %s...", retrieved_contexts[0][:100]
)
else:
logger.warning("⚠️ No contexts retrieved!")
# DEBUG: Print what was actually retrieved (only in debug mode)
logger.debug(
"📝 Test %s: Retrieved %s contexts", idx, len(retrieved_contexts)
)
# Prepare dataset for RAGAS evaluation with CORRECT contexts
eval_dataset = Dataset.from_dict(
@ -302,6 +404,8 @@ class RAGEvaluator:
context_recall,
context_precision,
],
llm=self.eval_llm,
embeddings=self.eval_embeddings,
)
# Convert to DataFrame (RAGAS v0.3+ API)
@ -312,6 +416,7 @@ class RAGEvaluator:
# Extract scores (RAGAS v0.3+ uses .to_pandas())
result = {
"test_number": idx,
"question": question,
"answer": rag_response["answer"][:200] + "..."
if len(rag_response["answer"]) > 200
@ -319,7 +424,7 @@ class RAGEvaluator:
"ground_truth": ground_truth[:200] + "..."
if len(ground_truth) > 200
else ground_truth,
"project": test_case.get("project_context", "unknown"),
"project": test_case.get("project", "unknown"),
"metrics": {
"faithfulness": float(scores_row.get("faithfulness", 0)),
"answer_relevance": float(
@ -333,22 +438,24 @@ class RAGEvaluator:
"timestamp": datetime.now().isoformat(),
}
# Calculate RAGAS score (average of all metrics)
# Calculate RAGAS score (average of all metrics, excluding NaN values)
metrics = result["metrics"]
ragas_score = sum(metrics.values()) / len(metrics) if metrics else 0
valid_metrics = [v for v in metrics.values() if not _is_nan(v)]
ragas_score = (
sum(valid_metrics) / len(valid_metrics) if valid_metrics else 0
)
result["ragas_score"] = round(ragas_score, 4)
logger.info("✅ Faithfulness: %.4f", metrics["faithfulness"])
logger.info("✅ Answer Relevance: %.4f", metrics["answer_relevance"])
logger.info("✅ Context Recall: %.4f", metrics["context_recall"])
logger.info("✅ Context Precision: %.4f", metrics["context_precision"])
logger.info("📊 RAGAS Score: %.4f", result["ragas_score"])
# Update progress counter
progress_counter["completed"] += 1
return result
except Exception as e:
logger.exception("❌ Error evaluating: %s", e)
logger.error("Error evaluating test %s: %s", idx, str(e))
progress_counter["completed"] += 1
return {
"test_number": idx,
"question": question,
"error": str(e),
"metrics": {},
@ -363,18 +470,22 @@ class RAGEvaluator:
Returns:
List of evaluation results with metrics
"""
# Get MAX_ASYNC from environment (default to 4 if not set)
max_async = int(os.getenv("MAX_ASYNC", "4"))
# Get evaluation concurrency from environment (default to 1 for serial evaluation)
max_async = int(os.getenv("EVAL_MAX_CONCURRENT", "3"))
logger.info("")
logger.info("%s", "=" * 70)
logger.info("🚀 Starting RAGAS Evaluation of Portfolio RAG System")
logger.info("🔧 Parallel evaluations: %s", max_async)
logger.info("🔧 Concurrent evaluations: %s", max_async)
logger.info("%s", "=" * 70)
logger.info("")
# Create semaphore to limit concurrent evaluations
semaphore = asyncio.Semaphore(max_async)
# Create progress counter (shared across all tasks)
progress_counter = {"completed": 0}
# Create shared HTTP client with connection pooling and proper timeouts
# Timeout: 3 minutes for connect, 5 minutes for read (LLM can be slow)
timeout = httpx.Timeout(
@ -390,7 +501,9 @@ class RAGEvaluator:
async with httpx.AsyncClient(timeout=timeout, limits=limits) as client:
# Create tasks for all test cases
tasks = [
self.evaluate_single_case(idx, test_case, semaphore, client)
self.evaluate_single_case(
idx, test_case, semaphore, client, progress_counter
)
for idx, test_case in enumerate(self.test_cases, 1)
]
@ -459,6 +572,95 @@ class RAGEvaluator:
return csv_path
def _format_metric(self, value: float, width: int = 6) -> str:
"""
Format a metric value for display, handling NaN gracefully
Args:
value: The metric value to format
width: The width of the formatted string
Returns:
Formatted string (e.g., "0.8523" or " N/A ")
"""
if _is_nan(value):
return "N/A".center(width)
return f"{value:.4f}".rjust(width)
def _display_results_table(self, results: List[Dict[str, Any]]):
"""
Display evaluation results in a formatted table
Args:
results: List of evaluation results
"""
logger.info("")
logger.info("%s", "=" * 115)
logger.info("📊 EVALUATION RESULTS SUMMARY")
logger.info("%s", "=" * 115)
# Table header
logger.info(
"%-4s | %-50s | %6s | %7s | %6s | %7s | %6s | %6s",
"#",
"Question",
"Faith",
"AnswRel",
"CtxRec",
"CtxPrec",
"RAGAS",
"Status",
)
logger.info("%s", "-" * 115)
# Table rows
for result in results:
test_num = result.get("test_number", 0)
question = result.get("question", "")
# Truncate question to 50 chars
question_display = (
(question[:47] + "...") if len(question) > 50 else question
)
metrics = result.get("metrics", {})
if metrics:
# Success case - format each metric, handling NaN values
faith = metrics.get("faithfulness", 0)
ans_rel = metrics.get("answer_relevance", 0)
ctx_rec = metrics.get("context_recall", 0)
ctx_prec = metrics.get("context_precision", 0)
ragas = result.get("ragas_score", 0)
status = ""
logger.info(
"%-4d | %-50s | %s | %s | %s | %s | %s | %6s",
test_num,
question_display,
self._format_metric(faith, 6),
self._format_metric(ans_rel, 7),
self._format_metric(ctx_rec, 6),
self._format_metric(ctx_prec, 7),
self._format_metric(ragas, 6),
status,
)
else:
# Error case
error = result.get("error", "Unknown error")
error_display = (error[:20] + "...") if len(error) > 23 else error
logger.info(
"%-4d | %-50s | %6s | %7s | %6s | %7s | %6s | ✗ %s",
test_num,
question_display,
"N/A",
"N/A",
"N/A",
"N/A",
"N/A",
error_display,
)
logger.info("%s", "=" * 115)
def _calculate_benchmark_stats(
self, results: List[Dict[str, Any]]
) -> Dict[str, Any]:
@ -485,45 +687,55 @@ class RAGEvaluator:
"success_rate": 0.0,
}
# Calculate averages for each metric (handling NaN values)
metrics_sum = {
"faithfulness": 0.0,
"answer_relevance": 0.0,
"context_recall": 0.0,
"context_precision": 0.0,
"ragas_score": 0.0,
# Calculate averages for each metric (handling NaN values correctly)
# Track both sum and count for each metric to handle NaN values properly
metrics_data = {
"faithfulness": {"sum": 0.0, "count": 0},
"answer_relevance": {"sum": 0.0, "count": 0},
"context_recall": {"sum": 0.0, "count": 0},
"context_precision": {"sum": 0.0, "count": 0},
"ragas_score": {"sum": 0.0, "count": 0},
}
for result in valid_results:
metrics = result.get("metrics", {})
# Skip NaN values when summing
# For each metric, sum non-NaN values and count them
faithfulness = metrics.get("faithfulness", 0)
if not _is_nan(faithfulness):
metrics_sum["faithfulness"] += faithfulness
metrics_data["faithfulness"]["sum"] += faithfulness
metrics_data["faithfulness"]["count"] += 1
answer_relevance = metrics.get("answer_relevance", 0)
if not _is_nan(answer_relevance):
metrics_sum["answer_relevance"] += answer_relevance
metrics_data["answer_relevance"]["sum"] += answer_relevance
metrics_data["answer_relevance"]["count"] += 1
context_recall = metrics.get("context_recall", 0)
if not _is_nan(context_recall):
metrics_sum["context_recall"] += context_recall
metrics_data["context_recall"]["sum"] += context_recall
metrics_data["context_recall"]["count"] += 1
context_precision = metrics.get("context_precision", 0)
if not _is_nan(context_precision):
metrics_sum["context_precision"] += context_precision
metrics_data["context_precision"]["sum"] += context_precision
metrics_data["context_precision"]["count"] += 1
ragas_score = result.get("ragas_score", 0)
if not _is_nan(ragas_score):
metrics_sum["ragas_score"] += ragas_score
metrics_data["ragas_score"]["sum"] += ragas_score
metrics_data["ragas_score"]["count"] += 1
# Calculate averages
n = len(valid_results)
# Calculate averages using actual counts for each metric
avg_metrics = {}
for k, v in metrics_sum.items():
avg_val = v / n if n > 0 else 0
# Handle NaN in average
avg_metrics[k] = round(avg_val, 4) if not _is_nan(avg_val) else 0.0
for metric_name, data in metrics_data.items():
if data["count"] > 0:
avg_val = data["sum"] / data["count"]
avg_metrics[metric_name] = (
round(avg_val, 4) if not _is_nan(avg_val) else 0.0
)
else:
avg_metrics[metric_name] = 0.0
# Find min and max RAGAS scores (filter out NaN)
ragas_scores = []
@ -556,6 +768,20 @@ class RAGEvaluator:
elapsed_time = time.time() - start_time
# Add a small delay to ensure all buffered output is completely written
await asyncio.sleep(0.2)
# Flush all output buffers to ensure RAGAS progress bars are fully displayed
# before showing our results table
sys.stdout.flush()
sys.stderr.flush()
# Make sure the progress bar line ends before logging summary output
sys.stderr.write("\n")
sys.stderr.flush()
# Display results table
self._display_results_table(results)
# Calculate benchmark statistics
benchmark_stats = self._calculate_benchmark_stats(results)

View file

@ -3,17 +3,17 @@
{
"question": "How does LightRAG solve the hallucination problem in large language models?",
"ground_truth": "LightRAG solves the hallucination problem by combining large language models with external knowledge retrieval. The framework ensures accurate responses by grounding LLM outputs in actual documents. LightRAG provides contextual responses that reduce hallucinations significantly.",
"context": "lightrag_overview"
"project": "lightrag_overview"
},
{
"question": "What are the three main components required in a RAG system?",
"ground_truth": "A RAG system requires three main components: a retrieval system (vector database or search engine) to find relevant documents, an embedding model to convert text into vector representations for similarity search, and a large language model (LLM) to generate responses based on retrieved context.",
"context": "rag_architecture"
"project": "rag_architecture"
},
{
"question": "How does LightRAG's retrieval performance compare to traditional RAG approaches?",
"ground_truth": "LightRAG delivers faster retrieval performance than traditional RAG approaches. The framework optimizes document retrieval operations for speed, while traditional RAG systems often suffer from slow query response times. LightRAG achieves high quality results with improved performance.",
"context": "lightrag_improvements"
"project": "lightrag_improvements"
}
]
}