LightRAG/lightrag/evaluation/eval_rag_quality.py
yangdx 4e4b8d7e25 Update RAG evaluation metrics to use class instances instead of objects
• Import metric classes not instances
• Instantiate metrics with () syntax
2025-11-04 15:56:57 +08:00

888 lines
33 KiB
Python

#!/usr/bin/env python3
"""
RAGAS Evaluation Script for Portfolio RAG System
Evaluates RAG response quality using RAGAS metrics:
- Faithfulness: Is the answer factually accurate based on context?
- Answer Relevance: Is the answer relevant to the question?
- Context Recall: Is all relevant information retrieved?
- Context Precision: Is retrieved context clean without noise?
Usage:
python lightrag/evaluation/eval_rag_quality.py
python lightrag/evaluation/eval_rag_quality.py http://localhost:9621
python lightrag/evaluation/eval_rag_quality.py http://your-rag-server.com:9621
Results are saved to: lightrag/evaluation/results/
- results_YYYYMMDD_HHMMSS.csv (CSV export for analysis)
- results_YYYYMMDD_HHMMSS.json (Full results with details)
Note on Custom OpenAI-Compatible Endpoints:
This script uses bypass_n=True mode for answer_relevancy metric to ensure
compatibility with custom endpoints that may not support OpenAI's 'n' parameter
for multiple completions. This generates multiple outputs through repeated prompts
instead, maintaining evaluation quality while supporting broader endpoint compatibility.
"""
import asyncio
import csv
import json
import math
import os
import sys
import time
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, List
import httpx
from dotenv import load_dotenv
from lightrag.utils import logger
# Add parent directory to path
sys.path.insert(0, str(Path(__file__).parent.parent.parent))
# use the .env that is inside the current folder
# allows to use different .env file for each lightrag instance
# the OS environment variables take precedence over the .env file
load_dotenv(dotenv_path=".env", override=False)
# Conditional imports - will raise ImportError if dependencies not installed
try:
from datasets import Dataset
from ragas import evaluate
from ragas.metrics import (
AnswerRelevancy,
ContextPrecision,
ContextRecall,
Faithfulness,
)
from ragas.llms import LangchainLLMWrapper
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
RAGAS_AVAILABLE = True
except ImportError:
RAGAS_AVAILABLE = False
Dataset = None
evaluate = None
LangchainLLMWrapper = None
CONNECT_TIMEOUT_SECONDS = 180.0
READ_TIMEOUT_SECONDS = 300.0
TOTAL_TIMEOUT_SECONDS = 180.0
def _is_nan(value: Any) -> bool:
"""Return True when value is a float NaN."""
return isinstance(value, float) and math.isnan(value)
class RAGEvaluator:
"""Evaluate RAG system quality using RAGAS metrics"""
def __init__(self, test_dataset_path: str = None, rag_api_url: str = None):
"""
Initialize evaluator with test dataset
Args:
test_dataset_path: Path to test dataset JSON file
rag_api_url: Base URL of LightRAG API (e.g., http://localhost:9621)
If None, will try to read from environment or use default
Environment Variables:
EVAL_LLM_MODEL: LLM model for evaluation (default: gpt-4o-mini)
EVAL_EMBEDDING_MODEL: Embedding model for evaluation (default: text-embedding-3-small)
EVAL_LLM_BINDING_API_KEY: API key for evaluation models (fallback to OPENAI_API_KEY)
EVAL_LLM_BINDING_HOST: Custom endpoint URL for evaluation models (optional)
Raises:
ImportError: If ragas or datasets packages are not installed
EnvironmentError: If EVAL_LLM_BINDING_API_KEY and OPENAI_API_KEY are both not set
"""
# Validate RAGAS dependencies are installed
if not RAGAS_AVAILABLE:
raise ImportError(
"RAGAS dependencies not installed. "
"Install with: pip install ragas datasets"
)
# Configure evaluation models (for RAGAS scoring)
eval_api_key = os.getenv("EVAL_LLM_BINDING_API_KEY") or os.getenv(
"OPENAI_API_KEY"
)
if not eval_api_key:
raise EnvironmentError(
"EVAL_LLM_BINDING_API_KEY or OPENAI_API_KEY is required for evaluation. "
"Set EVAL_LLM_BINDING_API_KEY to use a custom API key, "
"or ensure OPENAI_API_KEY is set."
)
eval_model = os.getenv("EVAL_LLM_MODEL", "gpt-4.1")
eval_embedding_model = os.getenv(
"EVAL_EMBEDDING_MODEL", "text-embedding-3-large"
)
eval_base_url = os.getenv("EVAL_LLM_BINDING_HOST")
# Create LLM and Embeddings instances for RAGAS
llm_kwargs = {
"model": eval_model,
"api_key": eval_api_key,
"max_retries": int(os.getenv("EVAL_LLM_MAX_RETRIES", "5")),
"request_timeout": int(os.getenv("EVAL_LLM_TIMEOUT", "180")),
}
embedding_kwargs = {"model": eval_embedding_model, "api_key": eval_api_key}
if eval_base_url:
llm_kwargs["base_url"] = eval_base_url
embedding_kwargs["base_url"] = eval_base_url
# Create base LangChain LLM
base_llm = ChatOpenAI(**llm_kwargs)
self.eval_embeddings = OpenAIEmbeddings(**embedding_kwargs)
# Wrap LLM with LangchainLLMWrapper and enable bypass_n mode for custom endpoints
# This ensures compatibility with endpoints that don't support the 'n' parameter
# by generating multiple outputs through repeated prompts instead of using 'n' parameter
try:
self.eval_llm = LangchainLLMWrapper(
langchain_llm=base_llm,
bypass_n=True, # Enable bypass_n to avoid passing 'n' to OpenAI API
)
logger.debug("Successfully configured bypass_n mode for LLM wrapper")
except Exception as e:
logger.warning(
"Could not configure LangchainLLMWrapper with bypass_n: %s. "
"Using base LLM directly, which may cause warnings with custom endpoints.",
e,
)
self.eval_llm = base_llm
if test_dataset_path is None:
test_dataset_path = Path(__file__).parent / "sample_dataset.json"
if rag_api_url is None:
rag_api_url = os.getenv("LIGHTRAG_API_URL", "http://localhost:9621")
self.test_dataset_path = Path(test_dataset_path)
self.rag_api_url = rag_api_url.rstrip("/")
self.results_dir = Path(__file__).parent / "results"
self.results_dir.mkdir(exist_ok=True)
# Load test dataset
self.test_cases = self._load_test_dataset()
# Store configuration values for display
self.eval_model = eval_model
self.eval_embedding_model = eval_embedding_model
self.eval_base_url = eval_base_url
self.eval_max_retries = llm_kwargs["max_retries"]
self.eval_timeout = llm_kwargs["request_timeout"]
# Display configuration
self._display_configuration()
def _display_configuration(self):
"""Display all evaluation configuration settings"""
logger.info("")
logger.info("%s", "=" * 70)
logger.info("🔧 EVALUATION CONFIGURATION")
logger.info("%s", "=" * 70)
logger.info("")
logger.info("Evaluation Models:")
logger.info(" • LLM Model: %s", self.eval_model)
logger.info(" • Embedding Model: %s", self.eval_embedding_model)
if self.eval_base_url:
logger.info(" • Custom Endpoint: %s", self.eval_base_url)
logger.info(" • Bypass N-Parameter: Enabled (for compatibility)")
else:
logger.info(" • Endpoint: OpenAI Official API")
logger.info("")
logger.info("Concurrency & Rate Limiting:")
max_concurrent = int(os.getenv("EVAL_MAX_CONCURRENT", "1"))
query_top_k = int(os.getenv("EVAL_QUERY_TOP_K", "10"))
logger.info(
" • Max Concurrent: %s %s",
max_concurrent,
"(serial evaluation)" if max_concurrent == 1 else "parallel evaluations",
)
logger.info(" • Query Top-K: %s Entities/Relations", query_top_k)
logger.info(" • LLM Max Retries: %s", self.eval_max_retries)
logger.info(" • LLM Timeout: %s seconds", self.eval_timeout)
logger.info("")
logger.info("Test Configuration:")
logger.info(" • Total Test Cases: %s", len(self.test_cases))
logger.info(" • Test Dataset: %s", self.test_dataset_path.name)
logger.info(" • LightRAG API: %s", self.rag_api_url)
logger.info(" • Results Directory: %s", self.results_dir.name)
logger.info("%s", "=" * 70)
logger.info("")
def _load_test_dataset(self) -> List[Dict[str, str]]:
"""Load test cases from JSON file"""
if not self.test_dataset_path.exists():
raise FileNotFoundError(f"Test dataset not found: {self.test_dataset_path}")
with open(self.test_dataset_path) as f:
data = json.load(f)
return data.get("test_cases", [])
async def generate_rag_response(
self,
question: str,
client: httpx.AsyncClient,
) -> Dict[str, Any]:
"""
Generate RAG response by calling LightRAG API.
Args:
question: The user query.
client: Shared httpx AsyncClient for connection pooling.
Returns:
Dictionary with 'answer' and 'contexts' keys.
'contexts' is a list of strings (one per retrieved document).
Raises:
Exception: If LightRAG API is unavailable.
"""
try:
payload = {
"query": question,
"mode": "mix",
"include_references": True,
"include_chunk_content": True, # NEW: Request chunk content in references
"response_type": "Multiple Paragraphs",
"top_k": int(os.getenv("EVAL_QUERY_TOP_K", "10")),
}
# Get API key from environment for authentication
api_key = os.getenv("LIGHTRAG_API_KEY")
# Prepare headers with optional authentication
headers = {}
if api_key:
headers["X-API-Key"] = api_key
# Single optimized API call - gets both answer AND chunk content
response = await client.post(
f"{self.rag_api_url}/query",
json=payload,
headers=headers if headers else None,
)
response.raise_for_status()
result = response.json()
answer = result.get("response", "No response generated")
references = result.get("references", [])
# DEBUG: Inspect the API response
logger.debug("🔍 References Count: %s", len(references))
if references:
first_ref = references[0]
logger.debug("🔍 First Reference Keys: %s", list(first_ref.keys()))
if "content" in first_ref:
content_preview = first_ref["content"]
if isinstance(content_preview, list) and content_preview:
logger.debug(
"🔍 Content Preview (first chunk): %s...",
content_preview[0][:100],
)
elif isinstance(content_preview, str):
logger.debug("🔍 Content Preview: %s...", content_preview[:100])
# Extract chunk content from enriched references
# Note: content is now a list of chunks per reference (one file may have multiple chunks)
contexts = []
for ref in references:
content = ref.get("content", [])
if isinstance(content, list):
# Flatten the list: each chunk becomes a separate context
contexts.extend(content)
elif isinstance(content, str):
# Backward compatibility: if content is still a string (shouldn't happen)
contexts.append(content)
return {
"answer": answer,
"contexts": contexts, # List of strings from actual retrieved chunks
}
except httpx.ConnectError as e:
raise Exception(
f"❌ Cannot connect to LightRAG API at {self.rag_api_url}\n"
f" Make sure LightRAG server is running:\n"
f" python -m lightrag.api.lightrag_server\n"
f" Error: {str(e)}"
)
except httpx.HTTPStatusError as e:
raise Exception(
f"LightRAG API error {e.response.status_code}: {e.response.text}"
)
except httpx.ReadTimeout as e:
raise Exception(
f"Request timeout after waiting for response\n"
f" Question: {question[:100]}...\n"
f" Error: {str(e)}"
)
except Exception as e:
raise Exception(f"Error calling LightRAG API: {type(e).__name__}: {str(e)}")
async def evaluate_single_case(
self,
idx: int,
test_case: Dict[str, str],
semaphore: asyncio.Semaphore,
client: httpx.AsyncClient,
progress_counter: Dict[str, int],
) -> Dict[str, Any]:
"""
Evaluate a single test case with concurrency control
Args:
idx: Test case index (1-based)
test_case: Test case dictionary with question and ground_truth
semaphore: Semaphore to control concurrency
client: Shared httpx AsyncClient for connection pooling
progress_counter: Shared dictionary for progress tracking
Returns:
Evaluation result dictionary
"""
async with semaphore:
question = test_case["question"]
ground_truth = test_case["ground_truth"]
# Generate RAG response by calling actual LightRAG API
try:
rag_response = await self.generate_rag_response(
question=question, client=client
)
except Exception as e:
logger.error("Error generating response for test %s: %s", idx, str(e))
progress_counter["completed"] += 1
return {
"test_number": idx,
"question": question,
"error": str(e),
"metrics": {},
"ragas_score": 0,
"timestamp": datetime.now().isoformat(),
}
# *** CRITICAL FIX: Use actual retrieved contexts, NOT ground_truth ***
retrieved_contexts = rag_response["contexts"]
# DEBUG: Print what was actually retrieved (only in debug mode)
logger.debug(
"📝 Test %s: Retrieved %s contexts", idx, len(retrieved_contexts)
)
# Prepare dataset for RAGAS evaluation with CORRECT contexts
eval_dataset = Dataset.from_dict(
{
"question": [question],
"answer": [rag_response["answer"]],
"contexts": [retrieved_contexts],
"ground_truth": [ground_truth],
}
)
# Run RAGAS evaluation
try:
eval_results = evaluate(
dataset=eval_dataset,
metrics=[
Faithfulness(),
AnswerRelevancy(),
ContextRecall(),
ContextPrecision(),
],
llm=self.eval_llm,
embeddings=self.eval_embeddings,
)
# Convert to DataFrame (RAGAS v0.3+ API)
df = eval_results.to_pandas()
# Extract scores from first row
scores_row = df.iloc[0]
# Extract scores (RAGAS v0.3+ uses .to_pandas())
result = {
"test_number": idx,
"question": question,
"answer": rag_response["answer"][:200] + "..."
if len(rag_response["answer"]) > 200
else rag_response["answer"],
"ground_truth": ground_truth[:200] + "..."
if len(ground_truth) > 200
else ground_truth,
"project": test_case.get("project", "unknown"),
"metrics": {
"faithfulness": float(scores_row.get("faithfulness", 0)),
"answer_relevance": float(
scores_row.get("answer_relevancy", 0)
),
"context_recall": float(scores_row.get("context_recall", 0)),
"context_precision": float(
scores_row.get("context_precision", 0)
),
},
"timestamp": datetime.now().isoformat(),
}
# Calculate RAGAS score (average of all metrics, excluding NaN values)
metrics = result["metrics"]
valid_metrics = [v for v in metrics.values() if not _is_nan(v)]
ragas_score = (
sum(valid_metrics) / len(valid_metrics) if valid_metrics else 0
)
result["ragas_score"] = round(ragas_score, 4)
# Update progress counter
progress_counter["completed"] += 1
return result
except Exception as e:
logger.error("Error evaluating test %s: %s", idx, str(e))
progress_counter["completed"] += 1
return {
"test_number": idx,
"question": question,
"error": str(e),
"metrics": {},
"ragas_score": 0,
"timestamp": datetime.now().isoformat(),
}
async def evaluate_responses(self) -> List[Dict[str, Any]]:
"""
Evaluate all test cases in parallel and return metrics
Returns:
List of evaluation results with metrics
"""
# Get evaluation concurrency from environment (default to 1 for serial evaluation)
max_async = int(os.getenv("EVAL_MAX_CONCURRENT", "3"))
logger.info("")
logger.info("%s", "=" * 70)
logger.info("🚀 Starting RAGAS Evaluation of Portfolio RAG System")
logger.info("🔧 Concurrent evaluations: %s", max_async)
logger.info("%s", "=" * 70)
logger.info("")
# Create semaphore to limit concurrent evaluations
semaphore = asyncio.Semaphore(max_async)
# Create progress counter (shared across all tasks)
progress_counter = {"completed": 0}
# Create shared HTTP client with connection pooling and proper timeouts
# Timeout: 3 minutes for connect, 5 minutes for read (LLM can be slow)
timeout = httpx.Timeout(
TOTAL_TIMEOUT_SECONDS,
connect=CONNECT_TIMEOUT_SECONDS,
read=READ_TIMEOUT_SECONDS,
)
limits = httpx.Limits(
max_connections=max_async * 2, # Allow some buffer
max_keepalive_connections=max_async,
)
async with httpx.AsyncClient(timeout=timeout, limits=limits) as client:
# Create tasks for all test cases
tasks = [
self.evaluate_single_case(
idx, test_case, semaphore, client, progress_counter
)
for idx, test_case in enumerate(self.test_cases, 1)
]
# Run all evaluations in parallel (limited by semaphore)
results = await asyncio.gather(*tasks)
return list(results)
def _export_to_csv(self, results: List[Dict[str, Any]]) -> Path:
"""
Export evaluation results to CSV file
Args:
results: List of evaluation results
Returns:
Path to the CSV file
CSV Format:
- question: The test question
- project: Project context
- faithfulness: Faithfulness score (0-1)
- answer_relevance: Answer relevance score (0-1)
- context_recall: Context recall score (0-1)
- context_precision: Context precision score (0-1)
- ragas_score: Overall RAGAS score (0-1)
- timestamp: When evaluation was run
"""
csv_path = (
self.results_dir / f"results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
)
with open(csv_path, "w", newline="", encoding="utf-8") as f:
fieldnames = [
"test_number",
"question",
"project",
"faithfulness",
"answer_relevance",
"context_recall",
"context_precision",
"ragas_score",
"status",
"timestamp",
]
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
for idx, result in enumerate(results, 1):
metrics = result.get("metrics", {})
writer.writerow(
{
"test_number": idx,
"question": result.get("question", ""),
"project": result.get("project", "unknown"),
"faithfulness": f"{metrics.get('faithfulness', 0):.4f}",
"answer_relevance": f"{metrics.get('answer_relevance', 0):.4f}",
"context_recall": f"{metrics.get('context_recall', 0):.4f}",
"context_precision": f"{metrics.get('context_precision', 0):.4f}",
"ragas_score": f"{result.get('ragas_score', 0):.4f}",
"status": "success" if metrics else "error",
"timestamp": result.get("timestamp", ""),
}
)
return csv_path
def _format_metric(self, value: float, width: int = 6) -> str:
"""
Format a metric value for display, handling NaN gracefully
Args:
value: The metric value to format
width: The width of the formatted string
Returns:
Formatted string (e.g., "0.8523" or " N/A ")
"""
if _is_nan(value):
return "N/A".center(width)
return f"{value:.4f}".rjust(width)
def _display_results_table(self, results: List[Dict[str, Any]]):
"""
Display evaluation results in a formatted table
Args:
results: List of evaluation results
"""
logger.info("")
logger.info("%s", "=" * 115)
logger.info("📊 EVALUATION RESULTS SUMMARY")
logger.info("%s", "=" * 115)
# Table header
logger.info(
"%-4s | %-50s | %6s | %7s | %6s | %7s | %6s | %6s",
"#",
"Question",
"Faith",
"AnswRel",
"CtxRec",
"CtxPrec",
"RAGAS",
"Status",
)
logger.info("%s", "-" * 115)
# Table rows
for result in results:
test_num = result.get("test_number", 0)
question = result.get("question", "")
# Truncate question to 50 chars
question_display = (
(question[:47] + "...") if len(question) > 50 else question
)
metrics = result.get("metrics", {})
if metrics:
# Success case - format each metric, handling NaN values
faith = metrics.get("faithfulness", 0)
ans_rel = metrics.get("answer_relevance", 0)
ctx_rec = metrics.get("context_recall", 0)
ctx_prec = metrics.get("context_precision", 0)
ragas = result.get("ragas_score", 0)
status = ""
logger.info(
"%-4d | %-50s | %s | %s | %s | %s | %s | %6s",
test_num,
question_display,
self._format_metric(faith, 6),
self._format_metric(ans_rel, 7),
self._format_metric(ctx_rec, 6),
self._format_metric(ctx_prec, 7),
self._format_metric(ragas, 6),
status,
)
else:
# Error case
error = result.get("error", "Unknown error")
error_display = (error[:20] + "...") if len(error) > 23 else error
logger.info(
"%-4d | %-50s | %6s | %7s | %6s | %7s | %6s | ✗ %s",
test_num,
question_display,
"N/A",
"N/A",
"N/A",
"N/A",
"N/A",
error_display,
)
logger.info("%s", "=" * 115)
def _calculate_benchmark_stats(
self, results: List[Dict[str, Any]]
) -> Dict[str, Any]:
"""
Calculate benchmark statistics from evaluation results
Args:
results: List of evaluation results
Returns:
Dictionary with benchmark statistics
"""
# Filter out results with errors
valid_results = [r for r in results if r.get("metrics")]
total_tests = len(results)
successful_tests = len(valid_results)
failed_tests = total_tests - successful_tests
if not valid_results:
return {
"total_tests": total_tests,
"successful_tests": 0,
"failed_tests": failed_tests,
"success_rate": 0.0,
}
# Calculate averages for each metric (handling NaN values correctly)
# Track both sum and count for each metric to handle NaN values properly
metrics_data = {
"faithfulness": {"sum": 0.0, "count": 0},
"answer_relevance": {"sum": 0.0, "count": 0},
"context_recall": {"sum": 0.0, "count": 0},
"context_precision": {"sum": 0.0, "count": 0},
"ragas_score": {"sum": 0.0, "count": 0},
}
for result in valid_results:
metrics = result.get("metrics", {})
# For each metric, sum non-NaN values and count them
faithfulness = metrics.get("faithfulness", 0)
if not _is_nan(faithfulness):
metrics_data["faithfulness"]["sum"] += faithfulness
metrics_data["faithfulness"]["count"] += 1
answer_relevance = metrics.get("answer_relevance", 0)
if not _is_nan(answer_relevance):
metrics_data["answer_relevance"]["sum"] += answer_relevance
metrics_data["answer_relevance"]["count"] += 1
context_recall = metrics.get("context_recall", 0)
if not _is_nan(context_recall):
metrics_data["context_recall"]["sum"] += context_recall
metrics_data["context_recall"]["count"] += 1
context_precision = metrics.get("context_precision", 0)
if not _is_nan(context_precision):
metrics_data["context_precision"]["sum"] += context_precision
metrics_data["context_precision"]["count"] += 1
ragas_score = result.get("ragas_score", 0)
if not _is_nan(ragas_score):
metrics_data["ragas_score"]["sum"] += ragas_score
metrics_data["ragas_score"]["count"] += 1
# Calculate averages using actual counts for each metric
avg_metrics = {}
for metric_name, data in metrics_data.items():
if data["count"] > 0:
avg_val = data["sum"] / data["count"]
avg_metrics[metric_name] = (
round(avg_val, 4) if not _is_nan(avg_val) else 0.0
)
else:
avg_metrics[metric_name] = 0.0
# Find min and max RAGAS scores (filter out NaN)
ragas_scores = []
for r in valid_results:
score = r.get("ragas_score", 0)
if _is_nan(score):
continue # Skip NaN values
ragas_scores.append(score)
min_score = min(ragas_scores) if ragas_scores else 0
max_score = max(ragas_scores) if ragas_scores else 0
return {
"total_tests": total_tests,
"successful_tests": successful_tests,
"failed_tests": failed_tests,
"success_rate": round(successful_tests / total_tests * 100, 2),
"average_metrics": avg_metrics,
"min_ragas_score": round(min_score, 4),
"max_ragas_score": round(max_score, 4),
}
async def run(self) -> Dict[str, Any]:
"""Run complete evaluation pipeline"""
start_time = time.time()
# Evaluate responses
results = await self.evaluate_responses()
elapsed_time = time.time() - start_time
# Add a small delay to ensure all buffered output is completely written
await asyncio.sleep(0.2)
# Flush all output buffers to ensure RAGAS progress bars are fully displayed
# before showing our results table
sys.stdout.flush()
sys.stderr.flush()
# Make sure the progress bar line ends before logging summary output
sys.stderr.write("\n")
sys.stderr.flush()
# Display results table
self._display_results_table(results)
# Calculate benchmark statistics
benchmark_stats = self._calculate_benchmark_stats(results)
# Save results
summary = {
"timestamp": datetime.now().isoformat(),
"total_tests": len(results),
"elapsed_time_seconds": round(elapsed_time, 2),
"benchmark_stats": benchmark_stats,
"results": results,
}
# Save JSON results
json_path = (
self.results_dir
/ f"results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
)
with open(json_path, "w") as f:
json.dump(summary, f, indent=2)
logger.info("✅ JSON results saved to: %s", json_path)
# Export to CSV
csv_path = self._export_to_csv(results)
logger.info("✅ CSV results saved to: %s", csv_path)
# Print summary
logger.info("")
logger.info("%s", "=" * 70)
logger.info("📊 EVALUATION COMPLETE")
logger.info("%s", "=" * 70)
logger.info("Total Tests: %s", len(results))
logger.info("Successful: %s", benchmark_stats["successful_tests"])
logger.info("Failed: %s", benchmark_stats["failed_tests"])
logger.info("Success Rate: %.2f%%", benchmark_stats["success_rate"])
logger.info("Elapsed Time: %.2f seconds", elapsed_time)
logger.info("Avg Time/Test: %.2f seconds", elapsed_time / len(results))
# Print benchmark metrics
logger.info("")
logger.info("%s", "=" * 70)
logger.info("📈 BENCHMARK RESULTS (Average)")
logger.info("%s", "=" * 70)
avg = benchmark_stats["average_metrics"]
logger.info("Average Faithfulness: %.4f", avg["faithfulness"])
logger.info("Average Answer Relevance: %.4f", avg["answer_relevance"])
logger.info("Average Context Recall: %.4f", avg["context_recall"])
logger.info("Average Context Precision: %.4f", avg["context_precision"])
logger.info("Average RAGAS Score: %.4f", avg["ragas_score"])
logger.info("")
logger.info(
"Min RAGAS Score: %.4f",
benchmark_stats["min_ragas_score"],
)
logger.info(
"Max RAGAS Score: %.4f",
benchmark_stats["max_ragas_score"],
)
logger.info("")
logger.info("%s", "=" * 70)
logger.info("📁 GENERATED FILES")
logger.info("%s", "=" * 70)
logger.info("Results Dir: %s", self.results_dir.absolute())
logger.info(" • CSV: %s", csv_path.name)
logger.info(" • JSON: %s", json_path.name)
logger.info("%s", "=" * 70)
return summary
async def main():
"""
Main entry point for RAGAS evaluation
Usage:
python lightrag/evaluation/eval_rag_quality.py
python lightrag/evaluation/eval_rag_quality.py http://localhost:9621
python lightrag/evaluation/eval_rag_quality.py http://your-server.com:9621
"""
try:
# Get RAG API URL from command line or environment
rag_api_url = None
if len(sys.argv) > 1:
rag_api_url = sys.argv[1]
logger.info("")
logger.info("%s", "=" * 70)
logger.info("🔍 RAGAS Evaluation - Using Real LightRAG API")
logger.info("%s", "=" * 70)
if rag_api_url:
logger.info("📡 RAG API URL: %s", rag_api_url)
else:
logger.info("📡 RAG API URL: http://localhost:9621 (default)")
logger.info("%s", "=" * 70)
evaluator = RAGEvaluator(rag_api_url=rag_api_url)
await evaluator.run()
except Exception as e:
logger.exception("❌ Error: %s", e)
sys.exit(1)
if __name__ == "__main__":
asyncio.run(main())