openrag/README.md
2025-10-08 11:33:50 -04:00

146 lines
No EOL
5.2 KiB
Markdown

<div align="center">
# OpenRAG
<div align="center">
<a href="https://github.com/langflow-ai/langflow"><img src="https://img.shields.io/badge/Langflow-1C1C1E?style=flat&logo=langflow" alt="Langflow"></a>
&nbsp;&nbsp;
<a href="https://github.com/opensearch-project/OpenSearch"><img src="https://img.shields.io/badge/OpenSearch-005EB8?style=flat&logo=opensearch&logoColor=white" alt="OpenSearch"></a>
&nbsp;&nbsp;
<a href="https://github.com/encode/starlette"><img src="https://img.shields.io/badge/Starlette-009639?style=flat&logo=fastapi&logoColor=white" alt="Starlette"></a>
&nbsp;&nbsp;
<a href="https://github.com/vercel/next.js"><img src="https://img.shields.io/badge/Next.js-000000?style=flat&logo=next.js&logoColor=white" alt="Next.js"></a>
&nbsp;&nbsp;
<a href="https://deepwiki.com/phact/openrag"><img src="https://deepwiki.com/badge.svg" alt="Ask DeepWiki"></a>
</div>
OpenRAG is a comprehensive Retrieval-Augmented Generation platform that enables intelligent document search and AI-powered conversations. Users can upload, process, and query documents through a chat interface backed by large language models and semantic search capabilities. The system utilizes Langflow for document ingestion, retrieval workflows, and intelligent nudges, providing a seamless RAG experience. Built with Starlette, Next.js, OpenSearch, and Langflow integration.
</div>
<div align="center">
<a href="#quick-start" style="color: #0366d6;">Quick Start</a> &nbsp;&nbsp;|&nbsp;&nbsp;
<a href="#tui-interface" style="color: #0366d6;">TUI Interface</a> &nbsp;&nbsp;|&nbsp;&nbsp;
<a href="#docker-deployment" style="color: #0366d6;">Docker Deployment</a> &nbsp;&nbsp;|&nbsp;&nbsp;
<a href="#development" style="color: #0366d6;">Development</a> &nbsp;&nbsp;|&nbsp;&nbsp;
<a href="#troubleshooting" style="color: #0366d6;">Troubleshooting</a>
</div>
## Quick Start
### Prerequisites
- Docker or Podman with Compose installed
- Make (for development commands)
### 1. Environment Setup
```bash
# Clone and setup environment
git clone https://github.com/langflow-ai/openrag.git
cd openrag
make setup # Creates .env and installs dependencies
```
### 2. Configure Environment
Edit `.env` with your API keys and credentials:
```bash
# Required
OPENAI_API_KEY=your_openai_api_key
OPENSEARCH_PASSWORD=your_secure_password
LANGFLOW_SUPERUSER=admin
LANGFLOW_SUPERUSER_PASSWORD=your_secure_password
LANGFLOW_CHAT_FLOW_ID=your_chat_flow_id
LANGFLOW_INGEST_FLOW_ID=your_ingest_flow_id
NUDGES_FLOW_ID=your_nudges_flow_id
```
See extended configuration, including ingestion and optional variables: [docs/reference/configuration.mdx](docs/docs/reference/configuration.mdx)
### 3. Start OpenRAG
```bash
# Full stack with GPU support
make dev
# Or CPU only
make dev-cpu
```
Access the services:
- **Frontend**: http://localhost:3000
- **Backend API**: http://localhost:8000
- **Langflow**: http://localhost:7860
- **OpenSearch**: http://localhost:9200
- **OpenSearch Dashboards**: http://localhost:5601
With OpenRAG started, ingest and retrieve documents with the [OpenRAG Quickstart](/docs/get-started/quickstart.mdx).
## TUI interface
OpenRAG includes a powerful Terminal User Interface (TUI) for easy setup, configuration, and monitoring. The TUI provides a user-friendly way to manage your OpenRAG installation without complex command-line operations.
![OpenRAG TUI Interface](assets/OpenRAG_TUI_2025-09-10T13_04_11_757637.svg)
### Launch OpenRAG with the TUI
From the repository root, run:
```bash
# Install dependencies first
uv sync
# Launch the TUI
uv run openrag
```
For the full TUI guide, see [docs/get-started/tui.mdx](docs/docs/get-started/tui.mdx)
## Docker Deployment
The repository includes two Docker Compose files.
They deploy the same applications and containers, but to different environments.
- [`docker-compose.yml`](https://github.com/langflow-ai/openrag/blob/main/docker-compose.yml) is an OpenRAG deployment with GPU support for accelerated AI processing.
- [`docker-compose-cpu.yml`](https://github.com/langflow-ai/openrag/blob/main/docker-compose-cpu.yml) is a CPU-only version of OpenRAG for systems without GPU support. Use this Docker compose file for environments where GPU drivers aren't available.
1. Clone the OpenRAG repository.
```bash
git clone https://github.com/langflow-ai/openrag.git
cd openrag
```
2. Build and start all services.
For the GPU-accelerated deployment, run:
```bash
docker compose build
docker compose up -d
```
For environments without GPU support, run:
```bash
docker compose -f docker-compose-cpu.yml up -d
```
For more information, see [docs/get-started/docker.mdx](docs/docs/get-started/docker.mdx)
## Troubleshooting
For common issues and fixes, see [docs/support/troubleshoot.mdx](docs/docs/support/troubleshoot.mdx).
## Development
For developers wanting to contribute to OpenRAG or set up a development environment, please see our comprehensive development guide:
**[📚 See CONTRIBUTING.md for detailed development instructions](CONTRIBUTING.md)**
### Quick Development Commands
```bash
make help # See all available commands
make setup # Initial development setup
make infra # Start infrastructure services
make backend # Run backend locally
make frontend # Run frontend locally
```