graphiti/graphiti_core/utils/maintenance/community_operations.py
remonxiao febf8923f6 Fix: Prevent oscillation in label propagation algorithm
- Changed from synchronous to asynchronous updates with randomized node order
- Added maximum iteration limit (100) to prevent infinite loops
- Implemented oscillation detection with early stopping mechanism
- Improved tie-breaking with deterministic sorting
- Added detailed docstring and logging for convergence/oscillation events
- Fixed oscillation detection to properly break out of nested loops

The previous implementation used synchronous updates where all nodes
updated simultaneously, which could cause oscillation in certain graph
structures (e.g., bipartite graphs). This fix ensures the algorithm
always terminates and produces stable community assignments while
maintaining backward compatibility with existing tests.
2025-12-12 15:10:07 +08:00

389 lines
13 KiB
Python

import asyncio
import logging
from collections import defaultdict
from pydantic import BaseModel
from graphiti_core.driver.driver import GraphDriver, GraphProvider
from graphiti_core.edges import CommunityEdge
from graphiti_core.embedder import EmbedderClient
from graphiti_core.helpers import semaphore_gather
from graphiti_core.llm_client import LLMClient
from graphiti_core.models.nodes.node_db_queries import COMMUNITY_NODE_RETURN
from graphiti_core.nodes import CommunityNode, EntityNode, get_community_node_from_record
from graphiti_core.prompts import prompt_library
from graphiti_core.prompts.summarize_nodes import Summary, SummaryDescription
from graphiti_core.utils.datetime_utils import utc_now
from graphiti_core.utils.maintenance.edge_operations import build_community_edges
MAX_COMMUNITY_BUILD_CONCURRENCY = 10
logger = logging.getLogger(__name__)
class Neighbor(BaseModel):
node_uuid: str
edge_count: int
async def get_community_clusters(
driver: GraphDriver, group_ids: list[str] | None
) -> list[list[EntityNode]]:
community_clusters: list[list[EntityNode]] = []
if group_ids is None:
group_id_values, _, _ = await driver.execute_query(
"""
MATCH (n:Entity)
WHERE n.group_id IS NOT NULL
RETURN
collect(DISTINCT n.group_id) AS group_ids
"""
)
group_ids = group_id_values[0]['group_ids'] if group_id_values else []
for group_id in group_ids:
projection: dict[str, list[Neighbor]] = {}
nodes = await EntityNode.get_by_group_ids(driver, [group_id])
for node in nodes:
match_query = """
MATCH (n:Entity {group_id: $group_id, uuid: $uuid})-[e:RELATES_TO]-(m: Entity {group_id: $group_id})
"""
if driver.provider == GraphProvider.KUZU:
match_query = """
MATCH (n:Entity {group_id: $group_id, uuid: $uuid})-[:RELATES_TO]-(e:RelatesToNode_)-[:RELATES_TO]-(m: Entity {group_id: $group_id})
"""
records, _, _ = await driver.execute_query(
match_query
+ """
WITH count(e) AS count, m.uuid AS uuid
RETURN
uuid,
count
""",
uuid=node.uuid,
group_id=group_id,
)
projection[node.uuid] = [
Neighbor(node_uuid=record['uuid'], edge_count=record['count']) for record in records
]
cluster_uuids = label_propagation(projection)
community_clusters.extend(
list(
await semaphore_gather(
*[EntityNode.get_by_uuids(driver, cluster) for cluster in cluster_uuids]
)
)
)
return community_clusters
def label_propagation(projection: dict[str, list[Neighbor]]) -> list[list[str]]:
"""
Implement the label propagation community detection algorithm.
Algorithm:
1. Start with each node being assigned its own community
2. Each node will take on the community of the plurality of its neighbors
3. Ties are broken by going to the largest community
4. Continue until no communities change during propagation
Oscillation prevention:
- Uses asynchronous updates (randomized node order)
- Maximum iteration limit to prevent infinite loops
- Early stopping if oscillation is detected
"""
import random
MAX_ITERATIONS = 100
OSCILLATION_CHECK_WINDOW = 5
community_map = {uuid: i for i, uuid in enumerate(projection.keys())}
node_uuids = list(projection.keys())
# Track history to detect oscillations
history: list[dict[str, int]] = []
for iteration in range(MAX_ITERATIONS):
# Asynchronous update: randomize node processing order to prevent oscillation
random.shuffle(node_uuids)
changed_count = 0
for uuid in node_uuids:
neighbors = projection[uuid]
curr_community = community_map[uuid]
# Count votes from neighbors
community_candidates: dict[int, int] = defaultdict(int)
for neighbor in neighbors:
community_candidates[community_map[neighbor.node_uuid]] += neighbor.edge_count
if not community_candidates:
continue
# Sort by count (descending), then by community ID for deterministic tie-breaking
community_lst = [
(count, community) for community, count in community_candidates.items()
]
community_lst.sort(key=lambda x: (-x[0], x[1]))
candidate_rank, community_candidate = community_lst[0]
# Determine new community:
# - If strong signal (edge count > 1), adopt the neighbor's community
# - Otherwise, prefer the larger community ID (original behavior)
if candidate_rank > 1:
new_community = community_candidate
else:
new_community = max(community_candidate, curr_community)
if new_community != curr_community:
community_map[uuid] = new_community
changed_count += 1
# Check for convergence
if changed_count == 0:
logger.debug(f'Label propagation converged after {iteration + 1} iterations')
break
# Check for oscillation by comparing with recent history
current_state = community_map.copy()
history.append(current_state)
# Keep only recent history
if len(history) > OSCILLATION_CHECK_WINDOW:
history.pop(0)
# Detect oscillation: if current state matches any recent state
if len(history) >= 2:
for past_state in history[:-1]:
if past_state == current_state:
logger.warning(
f'Label propagation oscillation detected at iteration {iteration + 1}, '
'stopping early'
)
# Break out of the for loop
break
else:
# No oscillation detected, continue to next iteration
continue
# Oscillation detected, break out of the main loop
break
else:
logger.warning(
f'Label propagation reached maximum iterations ({MAX_ITERATIONS}) without converging'
)
# Group nodes by community
community_cluster_map: dict[int, list[str]] = defaultdict(list)
for uuid, community in community_map.items():
community_cluster_map[community].append(uuid)
clusters = list(community_cluster_map.values())
return clusters
async def summarize_pair(llm_client: LLMClient, summary_pair: tuple[str, str]) -> str:
# Prepare context for LLM
context = {
'node_summaries': [{'summary': summary} for summary in summary_pair],
}
llm_response = await llm_client.generate_response(
prompt_library.summarize_nodes.summarize_pair(context),
response_model=Summary,
prompt_name='summarize_nodes.summarize_pair',
)
pair_summary = llm_response.get('summary', '')
return pair_summary
async def generate_summary_description(llm_client: LLMClient, summary: str) -> str:
context = {
'summary': summary,
}
llm_response = await llm_client.generate_response(
prompt_library.summarize_nodes.summary_description(context),
response_model=SummaryDescription,
prompt_name='summarize_nodes.summary_description',
)
description = llm_response.get('description', '')
return description
async def build_community(
llm_client: LLMClient, community_cluster: list[EntityNode]
) -> tuple[CommunityNode, list[CommunityEdge]]:
summaries = [entity.summary for entity in community_cluster]
length = len(summaries)
while length > 1:
odd_one_out: str | None = None
if length % 2 == 1:
odd_one_out = summaries.pop()
length -= 1
new_summaries: list[str] = list(
await semaphore_gather(
*[
summarize_pair(llm_client, (str(left_summary), str(right_summary)))
for left_summary, right_summary in zip(
summaries[: int(length / 2)], summaries[int(length / 2) :], strict=False
)
]
)
)
if odd_one_out is not None:
new_summaries.append(odd_one_out)
summaries = new_summaries
length = len(summaries)
summary = summaries[0]
name = await generate_summary_description(llm_client, summary)
now = utc_now()
community_node = CommunityNode(
name=name,
group_id=community_cluster[0].group_id,
labels=['Community'],
created_at=now,
summary=summary,
)
community_edges = build_community_edges(community_cluster, community_node, now)
logger.debug((community_node, community_edges))
return community_node, community_edges
async def build_communities(
driver: GraphDriver,
llm_client: LLMClient,
group_ids: list[str] | None,
) -> tuple[list[CommunityNode], list[CommunityEdge]]:
community_clusters = await get_community_clusters(driver, group_ids)
semaphore = asyncio.Semaphore(MAX_COMMUNITY_BUILD_CONCURRENCY)
async def limited_build_community(cluster):
async with semaphore:
return await build_community(llm_client, cluster)
communities: list[tuple[CommunityNode, list[CommunityEdge]]] = list(
await semaphore_gather(
*[limited_build_community(cluster) for cluster in community_clusters]
)
)
community_nodes: list[CommunityNode] = []
community_edges: list[CommunityEdge] = []
for community in communities:
community_nodes.append(community[0])
community_edges.extend(community[1])
return community_nodes, community_edges
async def remove_communities(driver: GraphDriver):
await driver.execute_query(
"""
MATCH (c:Community)
DETACH DELETE c
"""
)
async def determine_entity_community(
driver: GraphDriver, entity: EntityNode
) -> tuple[CommunityNode | None, bool]:
# Check if the node is already part of a community
records, _, _ = await driver.execute_query(
"""
MATCH (c:Community)-[:HAS_MEMBER]->(n:Entity {uuid: $entity_uuid})
RETURN
"""
+ COMMUNITY_NODE_RETURN,
entity_uuid=entity.uuid,
)
if len(records) > 0:
return get_community_node_from_record(records[0]), False
# If the node has no community, add it to the mode community of surrounding entities
match_query = """
MATCH (c:Community)-[:HAS_MEMBER]->(m:Entity)-[:RELATES_TO]-(n:Entity {uuid: $entity_uuid})
"""
if driver.provider == GraphProvider.KUZU:
match_query = """
MATCH (c:Community)-[:HAS_MEMBER]->(m:Entity)-[:RELATES_TO]-(e:RelatesToNode_)-[:RELATES_TO]-(n:Entity {uuid: $entity_uuid})
"""
records, _, _ = await driver.execute_query(
match_query
+ """
RETURN
"""
+ COMMUNITY_NODE_RETURN,
entity_uuid=entity.uuid,
)
communities: list[CommunityNode] = [
get_community_node_from_record(record) for record in records
]
community_map: dict[str, int] = defaultdict(int)
for community in communities:
community_map[community.uuid] += 1
community_uuid = None
max_count = 0
for uuid, count in community_map.items():
if count > max_count:
community_uuid = uuid
max_count = count
if max_count == 0:
return None, False
for community in communities:
if community.uuid == community_uuid:
return community, True
return None, False
async def update_community(
driver: GraphDriver,
llm_client: LLMClient,
embedder: EmbedderClient,
entity: EntityNode,
) -> tuple[list[CommunityNode], list[CommunityEdge]]:
community, is_new = await determine_entity_community(driver, entity)
if community is None:
return [], []
new_summary = await summarize_pair(llm_client, (entity.summary, community.summary))
new_name = await generate_summary_description(llm_client, new_summary)
community.summary = new_summary
community.name = new_name
community_edges = []
if is_new:
community_edge = (build_community_edges([entity], community, utc_now()))[0]
await community_edge.save(driver)
community_edges.append(community_edge)
await community.generate_name_embedding(embedder)
await community.save(driver)
return [community], community_edges