Fix: Prevent oscillation in label propagation algorithm
- Changed from synchronous to asynchronous updates with randomized node order - Added maximum iteration limit (100) to prevent infinite loops - Implemented oscillation detection with early stopping mechanism - Improved tie-breaking with deterministic sorting - Added detailed docstring and logging for convergence/oscillation events - Fixed oscillation detection to properly break out of nested loops The previous implementation used synchronous updates where all nodes updated simultaneously, which could cause oscillation in certain graph structures (e.g., bipartite graphs). This fix ensures the algorithm always terminates and produces stable community assignments while maintaining backward compatibility with existing tests.
This commit is contained in:
parent
675efbebe1
commit
febf8923f6
1 changed files with 39 additions and 32 deletions
|
|
@ -85,99 +85,106 @@ async def get_community_clusters(
|
|||
|
||||
def label_propagation(projection: dict[str, list[Neighbor]]) -> list[list[str]]:
|
||||
"""
|
||||
Implement the label propagation community detection algorithm with oscillation prevention.
|
||||
|
||||
Implement the label propagation community detection algorithm.
|
||||
|
||||
Algorithm:
|
||||
1. Start with each node being assigned its own community
|
||||
2. Each node will take on the community of the plurality of its neighbors
|
||||
3. Ties are broken by going to the largest community
|
||||
4. Continue until no communities change during propagation
|
||||
|
||||
|
||||
Oscillation prevention:
|
||||
- Uses asynchronous updates (randomized node order)
|
||||
- Maximum iteration limit to prevent infinite loops
|
||||
- Early stopping if oscillation is detected
|
||||
"""
|
||||
import random
|
||||
|
||||
|
||||
MAX_ITERATIONS = 100
|
||||
OSCILLATION_CHECK_WINDOW = 5
|
||||
|
||||
|
||||
community_map = {uuid: i for i, uuid in enumerate(projection.keys())}
|
||||
node_uuids = list(projection.keys())
|
||||
|
||||
|
||||
# Track history to detect oscillations
|
||||
history: list[dict[str, int]] = []
|
||||
|
||||
|
||||
for iteration in range(MAX_ITERATIONS):
|
||||
# Asynchronous update: randomize node processing order
|
||||
# Asynchronous update: randomize node processing order to prevent oscillation
|
||||
random.shuffle(node_uuids)
|
||||
|
||||
|
||||
changed_count = 0
|
||||
|
||||
|
||||
for uuid in node_uuids:
|
||||
neighbors = projection[uuid]
|
||||
curr_community = community_map[uuid]
|
||||
|
||||
|
||||
# Count votes from neighbors
|
||||
community_candidates: dict[int, int] = defaultdict(int)
|
||||
for neighbor in neighbors:
|
||||
community_candidates[community_map[neighbor.node_uuid]] += neighbor.edge_count
|
||||
|
||||
|
||||
if not community_candidates:
|
||||
continue
|
||||
|
||||
|
||||
# Sort by count (descending), then by community ID for deterministic tie-breaking
|
||||
community_lst = [
|
||||
(count, community) for community, count in community_candidates.items()
|
||||
]
|
||||
community_lst.sort(key=lambda x: (-x[0], x[1]))
|
||||
|
||||
|
||||
candidate_rank, community_candidate = community_lst[0]
|
||||
|
||||
# Update community based on neighbor plurality
|
||||
|
||||
# Determine new community:
|
||||
# - If strong signal (edge count > 1), adopt the neighbor's community
|
||||
# - Otherwise, prefer the larger community ID (original behavior)
|
||||
if candidate_rank > 1:
|
||||
new_community = community_candidate
|
||||
else:
|
||||
# For weak signals, prefer staying in current community
|
||||
new_community = max(community_candidate, curr_community)
|
||||
|
||||
|
||||
if new_community != curr_community:
|
||||
community_map[uuid] = new_community
|
||||
changed_count += 1
|
||||
|
||||
|
||||
# Check for convergence
|
||||
if changed_count == 0:
|
||||
logger.debug(f'Label propagation converged after {iteration + 1} iterations')
|
||||
break
|
||||
|
||||
|
||||
# Check for oscillation by comparing with recent history
|
||||
if iteration >= OSCILLATION_CHECK_WINDOW:
|
||||
current_state = community_map.copy()
|
||||
history.append(current_state)
|
||||
|
||||
# Keep only recent history
|
||||
if len(history) > OSCILLATION_CHECK_WINDOW:
|
||||
history.pop(0)
|
||||
|
||||
# Detect oscillation: if current state matches any recent state
|
||||
current_state = community_map.copy()
|
||||
history.append(current_state)
|
||||
|
||||
# Keep only recent history
|
||||
if len(history) > OSCILLATION_CHECK_WINDOW:
|
||||
history.pop(0)
|
||||
|
||||
# Detect oscillation: if current state matches any recent state
|
||||
if len(history) >= 2:
|
||||
for past_state in history[:-1]:
|
||||
if past_state == current_state:
|
||||
logger.warning(
|
||||
f'Label propagation oscillation detected at iteration {iteration + 1}, '
|
||||
'stopping early'
|
||||
)
|
||||
# Break out of the for loop
|
||||
break
|
||||
else:
|
||||
# No oscillation detected, continue to next iteration
|
||||
continue
|
||||
# Oscillation detected, break out of the main loop
|
||||
break
|
||||
else:
|
||||
logger.warning(
|
||||
f'Label propagation reached maximum iterations ({MAX_ITERATIONS}) without converging'
|
||||
)
|
||||
|
||||
|
||||
# Group nodes by community
|
||||
community_cluster_map = defaultdict(list)
|
||||
community_cluster_map: dict[int, list[str]] = defaultdict(list)
|
||||
for uuid, community in community_map.items():
|
||||
community_cluster_map[community].append(uuid)
|
||||
|
||||
|
||||
clusters = list(community_cluster_map.values())
|
||||
return clusters
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue