graphiti/examples/azure-openai/README.md
Daniel Chalef 55ef6acb16
Add Azure OpenAI example with Neo4j (#1064)
* Add Azure OpenAI example with Neo4j

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Convert Azure OpenAI example to use uv

- Remove requirements.txt (uv uses pyproject.toml)
- Update README to use 'uv sync' and 'uv run'

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Update Azure OpenAI example to use gpt-4.1

- Change default deployment from gpt-4 to gpt-4.1
- Update README recommendations to prioritize gpt-4.1 models

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Remove model recommendations from Azure OpenAI example

Model recommendations quickly become outdated.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Add default Neo4j credentials to docker-compose

Set sensible defaults (neo4j/password) to prevent NEO4J_AUTH error
when .env file is not present.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Update Azure OpenAI documentation to use v1 API

- Simplified Azure OpenAI setup using AsyncOpenAI with v1 endpoint
- Updated main README with clearer Quick Start example
- Removed outdated API version configuration
- Updated example deployment to gpt-5-mini
- Added note about v1 API endpoint format

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Update LLMConfig to include both model and small_model

Both parameters are needed for proper LLM configuration.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

* Address PR review feedback

- Remove flawed validation check in azure_openai_neo4j.py
- Remove unused azure-identity dependency
- Update docstrings to reflect dual client support (AsyncAzureOpenAI and AsyncOpenAI)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-11-14 08:34:35 -08:00

154 lines
4.3 KiB
Markdown

# Azure OpenAI with Neo4j Example
This example demonstrates how to use Graphiti with Azure OpenAI and Neo4j to build a knowledge graph.
## Prerequisites
- Python 3.10+
- Neo4j database (running locally or remotely)
- Azure OpenAI subscription with deployed models
## Setup
### 1. Install Dependencies
```bash
uv sync
```
### 2. Configure Environment Variables
Copy the `.env.example` file to `.env` and fill in your credentials:
```bash
cd examples/azure-openai
cp .env.example .env
```
Edit `.env` with your actual values:
```env
# Neo4j connection settings
NEO4J_URI=bolt://localhost:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=your-password
# Azure OpenAI settings
AZURE_OPENAI_ENDPOINT=https://your-resource-name.openai.azure.com
AZURE_OPENAI_API_KEY=your-api-key-here
AZURE_OPENAI_DEPLOYMENT=gpt-5-mini
AZURE_OPENAI_EMBEDDING_DEPLOYMENT=text-embedding-3-small
```
### 3. Azure OpenAI Model Deployments
This example requires two Azure OpenAI model deployments:
1. **Chat Completion Model**: Used for entity extraction and relationship analysis
- Set the deployment name in `AZURE_OPENAI_DEPLOYMENT`
2. **Embedding Model**: Used for semantic search
- Set the deployment name in `AZURE_OPENAI_EMBEDDING_DEPLOYMENT`
### 4. Neo4j Setup
Make sure Neo4j is running and accessible at the URI specified in your `.env` file.
For local development:
- Download and install [Neo4j Desktop](https://neo4j.com/download/)
- Create a new database
- Start the database
- Use the credentials in your `.env` file
## Running the Example
```bash
cd examples/azure-openai
uv run azure_openai_neo4j.py
```
## What This Example Does
1. **Initialization**: Sets up connections to Neo4j and Azure OpenAI
2. **Adding Episodes**: Ingests text and JSON data about California politics
3. **Basic Search**: Performs hybrid search combining semantic similarity and BM25 retrieval
4. **Center Node Search**: Reranks results based on graph distance to a specific node
5. **Cleanup**: Properly closes database connections
## Key Concepts
### Azure OpenAI Integration
The example shows how to configure Graphiti to use Azure OpenAI with the OpenAI v1 API:
```python
# Initialize Azure OpenAI client using the standard OpenAI client
# with Azure's v1 API endpoint
azure_client = AsyncOpenAI(
base_url=f"{azure_endpoint}/openai/v1/",
api_key=azure_api_key,
)
# Create LLM and Embedder clients
llm_client = AzureOpenAILLMClient(
azure_client=azure_client,
config=LLMConfig(model=azure_deployment, small_model=azure_deployment)
)
embedder_client = AzureOpenAIEmbedderClient(
azure_client=azure_client,
model=azure_embedding_deployment
)
# Initialize Graphiti with custom clients
graphiti = Graphiti(
neo4j_uri,
neo4j_user,
neo4j_password,
llm_client=llm_client,
embedder=embedder_client,
)
```
**Note**: This example uses Azure OpenAI's v1 API compatibility layer, which allows using the standard `AsyncOpenAI` client. The endpoint format is `https://your-resource-name.openai.azure.com/openai/v1/`.
### Episodes
Episodes are the primary units of information in Graphiti. They can be:
- **Text**: Raw text content (e.g., transcripts, documents)
- **JSON**: Structured data with key-value pairs
### Hybrid Search
Graphiti combines multiple search strategies:
- **Semantic Search**: Uses embeddings to find semantically similar content
- **BM25**: Keyword-based text retrieval
- **Graph Traversal**: Leverages relationships between entities
## Troubleshooting
### Azure OpenAI API Errors
- Verify your endpoint URL is correct (should end in `.openai.azure.com`)
- Check that your API key is valid
- Ensure your deployment names match actual deployments in Azure
- Verify API version is supported by your deployment
### Neo4j Connection Issues
- Ensure Neo4j is running
- Check firewall settings
- Verify credentials are correct
- Check URI format (should be `bolt://` or `neo4j://`)
## Next Steps
- Explore other search recipes in `graphiti_core/search/search_config_recipes.py`
- Try different episode types and content
- Experiment with custom entity definitions
- Add more episodes to build a larger knowledge graph
## Related Examples
- `examples/quickstart/` - Basic Graphiti usage with OpenAI
- `examples/podcast/` - Processing longer content
- `examples/ecommerce/` - Domain-specific knowledge graphs