refactor string formatting to use single quotes in node operations

This commit is contained in:
Daniel Chalef 2025-09-24 21:17:08 -07:00
parent 152deb930d
commit 859d7aee5e

View file

@ -65,16 +65,16 @@ async def extract_nodes_reflexion(
) -> list[str]:
# Prepare context for LLM
context = {
"episode_content": episode.content,
"previous_episodes": [ep.content for ep in previous_episodes],
"extracted_entities": node_names,
"ensure_ascii": ensure_ascii,
'episode_content': episode.content,
'previous_episodes': [ep.content for ep in previous_episodes],
'extracted_entities': node_names,
'ensure_ascii': ensure_ascii,
}
llm_response = await llm_client.generate_response(
prompt_library.extract_nodes.reflexion(context), MissedEntities
)
missed_entities = llm_response.get("missed_entities", [])
missed_entities = llm_response.get('missed_entities', [])
return missed_entities
@ -89,24 +89,24 @@ async def extract_nodes(
start = time()
llm_client = clients.llm_client
llm_response = {}
custom_prompt = ""
custom_prompt = ''
entities_missed = True
reflexion_iterations = 0
entity_types_context = [
{
"entity_type_id": 0,
"entity_type_name": "Entity",
"entity_type_description": "Default entity classification. Use this entity type if the entity is not one of the other listed types.",
'entity_type_id': 0,
'entity_type_name': 'Entity',
'entity_type_description': 'Default entity classification. Use this entity type if the entity is not one of the other listed types.',
}
]
entity_types_context += (
[
{
"entity_type_id": i + 1,
"entity_type_name": type_name,
"entity_type_description": type_model.__doc__,
'entity_type_id': i + 1,
'entity_type_name': type_name,
'entity_type_description': type_model.__doc__,
}
for i, (type_name, type_model) in enumerate(entity_types.items())
]
@ -115,13 +115,13 @@ async def extract_nodes(
)
context = {
"episode_content": episode.content,
"episode_timestamp": episode.valid_at.isoformat(),
"previous_episodes": [ep.content for ep in previous_episodes],
"custom_prompt": custom_prompt,
"entity_types": entity_types_context,
"source_description": episode.source_description,
"ensure_ascii": clients.ensure_ascii,
'episode_content': episode.content,
'episode_timestamp': episode.valid_at.isoformat(),
'previous_episodes': [ep.content for ep in previous_episodes],
'custom_prompt': custom_prompt,
'entity_types': entity_types_context,
'source_description': episode.source_description,
'ensure_ascii': clients.ensure_ascii,
}
while entities_missed and reflexion_iterations <= MAX_REFLEXION_ITERATIONS:
@ -157,48 +157,42 @@ async def extract_nodes(
entities_missed = len(missing_entities) != 0
custom_prompt = "Make sure that the following entities are extracted: "
custom_prompt = 'Make sure that the following entities are extracted: '
for entity in missing_entities:
custom_prompt += f"\n{entity},"
custom_prompt += f'\n{entity},'
filtered_extracted_entities = [
entity for entity in extracted_entities if entity.name.strip()
]
filtered_extracted_entities = [entity for entity in extracted_entities if entity.name.strip()]
end = time()
logger.debug(
f"Extracted new nodes: {filtered_extracted_entities} in {(end - start) * 1000} ms"
)
logger.debug(f'Extracted new nodes: {filtered_extracted_entities} in {(end - start) * 1000} ms')
# Convert the extracted data into EntityNode objects
extracted_nodes = []
for extracted_entity in filtered_extracted_entities:
type_id = extracted_entity.entity_type_id
if 0 <= type_id < len(entity_types_context):
entity_type_name = entity_types_context[
extracted_entity.entity_type_id
].get("entity_type_name")
entity_type_name = entity_types_context[extracted_entity.entity_type_id].get(
'entity_type_name'
)
else:
entity_type_name = "Entity"
entity_type_name = 'Entity'
# Check if this entity type should be excluded
if excluded_entity_types and entity_type_name in excluded_entity_types:
logger.debug(
f'Excluding entity "{extracted_entity.name}" of type "{entity_type_name}"'
)
logger.debug(f'Excluding entity "{extracted_entity.name}" of type "{entity_type_name}"')
continue
labels: list[str] = list({"Entity", str(entity_type_name)})
labels: list[str] = list({'Entity', str(entity_type_name)})
new_node = EntityNode(
name=extracted_entity.name,
group_id=episode.group_id,
labels=labels,
summary="",
summary='',
created_at=utc_now(),
)
extracted_nodes.append(new_node)
logger.debug(f"Created new node: {new_node.name} (UUID: {new_node.uuid})")
logger.debug(f'Created new node: {new_node.name} (UUID: {new_node.uuid})')
logger.debug(f"Extracted nodes: {[(n.name, n.uuid) for n in extracted_nodes]}")
logger.debug(f'Extracted nodes: {[(n.name, n.uuid) for n in extracted_nodes]}')
return extracted_nodes
@ -221,9 +215,7 @@ async def _collect_candidate_nodes(
]
)
candidate_nodes: list[EntityNode] = [
node for result in search_results for node in result.nodes
]
candidate_nodes: list[EntityNode] = [node for result in search_results for node in result.nodes]
if existing_nodes_override is not None:
candidate_nodes.extend(existing_nodes_override)
@ -253,21 +245,19 @@ async def _resolve_with_llm(
if not state.unresolved_indices:
return
entity_types_dict: dict[str, type[BaseModel]] = (
entity_types if entity_types is not None else {}
)
entity_types_dict: dict[str, type[BaseModel]] = entity_types if entity_types is not None else {}
llm_extracted_nodes = [extracted_nodes[i] for i in state.unresolved_indices]
extracted_nodes_context = [
{
"id": i,
"name": node.name,
"entity_type": node.labels,
"entity_type_description": entity_types_dict.get(
next((item for item in node.labels if item != "Entity"), "")
'id': i,
'name': node.name,
'entity_type': node.labels,
'entity_type_description': entity_types_dict.get(
next((item for item in node.labels if item != 'Entity'), '')
).__doc__
or "Default Entity Type",
or 'Default Entity Type',
}
for i, node in enumerate(llm_extracted_nodes)
]
@ -275,9 +265,9 @@ async def _resolve_with_llm(
existing_nodes_context = [
{
**{
"idx": i,
"name": candidate.name,
"entity_types": candidate.labels,
'idx': i,
'name': candidate.name,
'entity_types': candidate.labels,
},
**candidate.attributes,
}
@ -285,15 +275,13 @@ async def _resolve_with_llm(
]
context = {
"extracted_nodes": extracted_nodes_context,
"existing_nodes": existing_nodes_context,
"episode_content": episode.content if episode is not None else "",
"previous_episodes": (
[ep.content for ep in previous_episodes]
if previous_episodes is not None
else []
'extracted_nodes': extracted_nodes_context,
'existing_nodes': existing_nodes_context,
'episode_content': episode.content if episode is not None else '',
'previous_episodes': (
[ep.content for ep in previous_episodes] if previous_episodes is not None else []
),
"ensure_ascii": ensure_ascii,
'ensure_ascii': ensure_ascii,
}
llm_response = await llm_client.generate_response(
@ -301,9 +289,7 @@ async def _resolve_with_llm(
response_model=NodeResolutions,
)
node_resolutions: list[NodeDuplicate] = NodeResolutions(
**llm_response
).entity_resolutions
node_resolutions: list[NodeDuplicate] = NodeResolutions(**llm_response).entity_resolutions
for resolution in node_resolutions:
relative_id: int = resolution.id
@ -367,13 +353,13 @@ async def resolve_extracted_nodes(
state.uuid_map[node.uuid] = node.uuid
logger.debug(
"Resolved nodes: %s",
'Resolved nodes: %s',
[(node.name, node.uuid) for node in state.resolved_nodes if node is not None],
)
new_node_duplicates: list[tuple[EntityNode, EntityNode]] = (
await filter_existing_duplicate_of_edges(driver, node_duplicates)
)
new_node_duplicates: list[
tuple[EntityNode, EntityNode]
] = await filter_existing_duplicate_of_edges(driver, node_duplicates)
return (
[node for node in state.resolved_nodes if node is not None],
@ -399,9 +385,7 @@ async def extract_attributes_from_nodes(
episode,
previous_episodes,
(
entity_types.get(
next((item for item in node.labels if item != "Entity"), "")
)
entity_types.get(next((item for item in node.labels if item != 'Entity'), ''))
if entity_types is not None
else None
),
@ -425,32 +409,28 @@ async def extract_attributes_from_node(
ensure_ascii: bool = False,
) -> EntityNode:
node_context: dict[str, Any] = {
"name": node.name,
"summary": node.summary,
"entity_types": node.labels,
"attributes": node.attributes,
'name': node.name,
'summary': node.summary,
'entity_types': node.labels,
'attributes': node.attributes,
}
attributes_context: dict[str, Any] = {
"node": node_context,
"episode_content": episode.content if episode is not None else "",
"previous_episodes": (
[ep.content for ep in previous_episodes]
if previous_episodes is not None
else []
'node': node_context,
'episode_content': episode.content if episode is not None else '',
'previous_episodes': (
[ep.content for ep in previous_episodes] if previous_episodes is not None else []
),
"ensure_ascii": ensure_ascii,
'ensure_ascii': ensure_ascii,
}
summary_context: dict[str, Any] = {
"node": node_context,
"episode_content": episode.content if episode is not None else "",
"previous_episodes": (
[ep.content for ep in previous_episodes]
if previous_episodes is not None
else []
'node': node_context,
'episode_content': episode.content if episode is not None else '',
'previous_episodes': (
[ep.content for ep in previous_episodes] if previous_episodes is not None else []
),
"ensure_ascii": ensure_ascii,
'ensure_ascii': ensure_ascii,
}
has_entity_attributes: bool = bool(
@ -478,7 +458,7 @@ async def extract_attributes_from_node(
if has_entity_attributes and entity_type is not None:
entity_type(**llm_response)
node.summary = summary_response.get("summary", "")
node.summary = summary_response.get('summary', '')
node_attributes = {key: value for key, value in llm_response.items()}
node.attributes.update(node_attributes)