implement deduplication helpers and integrate with node operations

This commit is contained in:
Daniel Chalef 2025-09-24 21:16:08 -07:00
parent 04288ef9af
commit 152deb930d
5 changed files with 794 additions and 119 deletions

View file

@ -0,0 +1,253 @@
"""
Copyright 2024, Zep Software, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from __future__ import annotations
import math
import re
from collections import defaultdict
from collections.abc import Iterable
from dataclasses import dataclass
from functools import lru_cache
from hashlib import blake2b
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from graphiti_core.nodes import EntityNode
_NAME_ENTROPY_THRESHOLD = 1.5
_MIN_NAME_LENGTH = 6
_MIN_TOKEN_COUNT = 2
_FUZZY_JACCARD_THRESHOLD = 0.9
_MINHASH_PERMUTATIONS = 32
_MINHASH_BAND_SIZE = 4
def _normalize_name_exact(name: str) -> str:
"""Lowercase text and collapse whitespace so equal names map to the same key."""
normalized = re.sub(r'[\s]+', ' ', name.lower())
return normalized.strip()
def _normalize_name_for_fuzzy(name: str) -> str:
"""Produce a fuzzier form that keeps alphanumerics and apostrophes for n-gram shingles."""
normalized = re.sub(r"[^a-z0-9' ]", ' ', _normalize_name_exact(name))
normalized = normalized.strip()
return re.sub(r'[\s]+', ' ', normalized)
def _name_entropy(normalized_name: str) -> float:
"""Approximate text specificity using Shannon entropy over characters.
We strip spaces, count how often each character appears, and sum
probability * -log2(probability). Short or repetitive names yield low
entropy, which signals we should defer resolution to the LLM instead of
trusting fuzzy similarity.
"""
if not normalized_name:
return 0.0
counts: dict[str, int] = {}
for char in normalized_name.replace(' ', ''):
counts[char] = counts.get(char, 0) + 1
total = sum(counts.values())
if total == 0:
return 0.0
entropy = 0.0
for count in counts.values():
probability = count / total
entropy -= probability * math.log2(probability)
return entropy
def _has_high_entropy(normalized_name: str) -> bool:
"""Filter out very short or low-entropy names that are unreliable for fuzzy matching."""
token_count = len(normalized_name.split())
if len(normalized_name) < _MIN_NAME_LENGTH and token_count < _MIN_TOKEN_COUNT:
return False
return _name_entropy(normalized_name) >= _NAME_ENTROPY_THRESHOLD
def _shingles(normalized_name: str) -> set[str]:
"""Create 3-gram shingles from the normalized name for MinHash calculations."""
cleaned = normalized_name.replace(' ', '')
if len(cleaned) < 2:
return {cleaned} if cleaned else set()
return {cleaned[i : i + 3] for i in range(len(cleaned) - 2)}
def _hash_shingle(shingle: str, seed: int) -> int:
"""Generate a deterministic 64-bit hash for a shingle given the permutation seed."""
digest = blake2b(f'{seed}:{shingle}'.encode(), digest_size=8)
return int.from_bytes(digest.digest(), 'big')
def _minhash_signature(shingles: Iterable[str]) -> tuple[int, ...]:
"""Compute the MinHash signature for the shingle set across predefined permutations."""
if not shingles:
return tuple()
seeds = range(_MINHASH_PERMUTATIONS)
signature: list[int] = []
for seed in seeds:
min_hash = min(_hash_shingle(shingle, seed) for shingle in shingles)
signature.append(min_hash)
return tuple(signature)
def _lsh_bands(signature: Iterable[int]) -> list[tuple[int, ...]]:
"""Split the MinHash signature into fixed-size bands for locality-sensitive hashing."""
signature_list = list(signature)
if not signature_list:
return []
bands: list[tuple[int, ...]] = []
for start in range(0, len(signature_list), _MINHASH_BAND_SIZE):
band = tuple(signature_list[start : start + _MINHASH_BAND_SIZE])
if len(band) == _MINHASH_BAND_SIZE:
bands.append(band)
return bands
def _jaccard_similarity(a: set[str], b: set[str]) -> float:
"""Return the Jaccard similarity between two shingle sets, handling empty edge cases."""
if not a and not b:
return 1.0
if not a or not b:
return 0.0
intersection = len(a.intersection(b))
union = len(a.union(b))
return intersection / union if union else 0.0
@lru_cache(maxsize=512)
def _cached_shingles(name: str) -> set[str]:
"""Cache shingle sets per normalized name to avoid recomputation within a worker."""
return _shingles(name)
@dataclass
class DedupCandidateIndexes:
"""Precomputed lookup structures that drive entity deduplication heuristics."""
existing_nodes: list[EntityNode]
normalized_existing: defaultdict[str, list[EntityNode]]
shingles_by_candidate: dict[str, set[str]]
lsh_buckets: defaultdict[tuple[int, tuple[int, ...]], list[str]]
@dataclass
class DedupResolutionState:
"""Mutable resolution bookkeeping shared across deterministic and LLM passes."""
resolved_nodes: list[EntityNode | None]
uuid_map: dict[str, str]
unresolved_indices: list[int]
def _build_candidate_indexes(existing_nodes: list[EntityNode]) -> DedupCandidateIndexes:
"""Precompute exact and fuzzy lookup structures once per dedupe run."""
normalized_existing: defaultdict[str, list[EntityNode]] = defaultdict(list)
shingles_by_candidate: dict[str, set[str]] = {}
lsh_buckets: defaultdict[tuple[int, tuple[int, ...]], list[str]] = defaultdict(list)
for candidate in existing_nodes:
normalized = _normalize_name_exact(candidate.name)
normalized_existing[normalized].append(candidate)
shingles = _cached_shingles(_normalize_name_for_fuzzy(candidate.name))
shingles_by_candidate[candidate.uuid] = shingles
signature = _minhash_signature(shingles)
for band_index, band in enumerate(_lsh_bands(signature)):
lsh_buckets[(band_index, band)].append(candidate.uuid)
return DedupCandidateIndexes(
existing_nodes=existing_nodes,
normalized_existing=normalized_existing,
shingles_by_candidate=shingles_by_candidate,
lsh_buckets=lsh_buckets,
)
def _resolve_with_similarity(
extracted_nodes: list[EntityNode],
indexes: DedupCandidateIndexes,
state: DedupResolutionState,
) -> None:
"""Attempt deterministic resolution using exact name hits and fuzzy MinHash comparisons."""
for idx, node in enumerate(extracted_nodes):
normalized_exact = _normalize_name_exact(node.name)
normalized_fuzzy = _normalize_name_for_fuzzy(node.name)
if not _has_high_entropy(normalized_fuzzy):
state.unresolved_indices.append(idx)
continue
existing_matches = indexes.normalized_existing.get(normalized_exact, [])
if len(existing_matches) == 1:
match = existing_matches[0]
state.resolved_nodes[idx] = match
state.uuid_map[node.uuid] = match.uuid
continue
shingles = _cached_shingles(normalized_fuzzy)
signature = _minhash_signature(shingles)
candidate_ids: set[str] = set()
for band_index, band in enumerate(_lsh_bands(signature)):
candidate_ids.update(indexes.lsh_buckets.get((band_index, band), []))
best_candidate: EntityNode | None = None
best_score = 0.0
for candidate_id in candidate_ids:
candidate_shingles = indexes.shingles_by_candidate.get(candidate_id, set())
score = _jaccard_similarity(shingles, candidate_shingles)
if score > best_score:
best_score = score
best_candidate = next(
(cand for cand in indexes.existing_nodes if cand.uuid == candidate_id),
None,
)
if best_candidate is not None and best_score >= _FUZZY_JACCARD_THRESHOLD:
state.resolved_nodes[idx] = best_candidate
state.uuid_map[node.uuid] = best_candidate.uuid
continue
state.unresolved_indices.append(idx)
__all__ = [
'DedupCandidateIndexes',
'DedupResolutionState',
'_normalize_name_exact',
'_normalize_name_for_fuzzy',
'_has_high_entropy',
'_minhash_signature',
'_lsh_bands',
'_jaccard_similarity',
'_cached_shingles',
'_FUZZY_JACCARD_THRESHOLD',
'_build_candidate_indexes',
'_resolve_with_similarity',
]

View file

@ -24,7 +24,12 @@ from graphiti_core.graphiti_types import GraphitiClients
from graphiti_core.helpers import MAX_REFLEXION_ITERATIONS, semaphore_gather
from graphiti_core.llm_client import LLMClient
from graphiti_core.llm_client.config import ModelSize
from graphiti_core.nodes import EntityNode, EpisodeType, EpisodicNode, create_entity_node_embeddings
from graphiti_core.nodes import (
EntityNode,
EpisodeType,
EpisodicNode,
create_entity_node_embeddings,
)
from graphiti_core.prompts import prompt_library
from graphiti_core.prompts.dedupe_nodes import NodeDuplicate, NodeResolutions
from graphiti_core.prompts.extract_nodes import (
@ -38,7 +43,15 @@ from graphiti_core.search.search_config import SearchResults
from graphiti_core.search.search_config_recipes import NODE_HYBRID_SEARCH_RRF
from graphiti_core.search.search_filters import SearchFilters
from graphiti_core.utils.datetime_utils import utc_now
from graphiti_core.utils.maintenance.edge_operations import filter_existing_duplicate_of_edges
from graphiti_core.utils.maintenance.dedup_helpers import (
DedupCandidateIndexes,
DedupResolutionState,
_build_candidate_indexes,
_resolve_with_similarity,
)
from graphiti_core.utils.maintenance.edge_operations import (
filter_existing_duplicate_of_edges,
)
logger = logging.getLogger(__name__)
@ -52,16 +65,16 @@ async def extract_nodes_reflexion(
) -> list[str]:
# Prepare context for LLM
context = {
'episode_content': episode.content,
'previous_episodes': [ep.content for ep in previous_episodes],
'extracted_entities': node_names,
'ensure_ascii': ensure_ascii,
"episode_content": episode.content,
"previous_episodes": [ep.content for ep in previous_episodes],
"extracted_entities": node_names,
"ensure_ascii": ensure_ascii,
}
llm_response = await llm_client.generate_response(
prompt_library.extract_nodes.reflexion(context), MissedEntities
)
missed_entities = llm_response.get('missed_entities', [])
missed_entities = llm_response.get("missed_entities", [])
return missed_entities
@ -76,24 +89,24 @@ async def extract_nodes(
start = time()
llm_client = clients.llm_client
llm_response = {}
custom_prompt = ''
custom_prompt = ""
entities_missed = True
reflexion_iterations = 0
entity_types_context = [
{
'entity_type_id': 0,
'entity_type_name': 'Entity',
'entity_type_description': 'Default entity classification. Use this entity type if the entity is not one of the other listed types.',
"entity_type_id": 0,
"entity_type_name": "Entity",
"entity_type_description": "Default entity classification. Use this entity type if the entity is not one of the other listed types.",
}
]
entity_types_context += (
[
{
'entity_type_id': i + 1,
'entity_type_name': type_name,
'entity_type_description': type_model.__doc__,
"entity_type_id": i + 1,
"entity_type_name": type_name,
"entity_type_description": type_model.__doc__,
}
for i, (type_name, type_model) in enumerate(entity_types.items())
]
@ -102,13 +115,13 @@ async def extract_nodes(
)
context = {
'episode_content': episode.content,
'episode_timestamp': episode.valid_at.isoformat(),
'previous_episodes': [ep.content for ep in previous_episodes],
'custom_prompt': custom_prompt,
'entity_types': entity_types_context,
'source_description': episode.source_description,
'ensure_ascii': clients.ensure_ascii,
"episode_content": episode.content,
"episode_timestamp": episode.valid_at.isoformat(),
"previous_episodes": [ep.content for ep in previous_episodes],
"custom_prompt": custom_prompt,
"entity_types": entity_types_context,
"source_description": episode.source_description,
"ensure_ascii": clients.ensure_ascii,
}
while entities_missed and reflexion_iterations <= MAX_REFLEXION_ITERATIONS:
@ -119,11 +132,13 @@ async def extract_nodes(
)
elif episode.source == EpisodeType.text:
llm_response = await llm_client.generate_response(
prompt_library.extract_nodes.extract_text(context), response_model=ExtractedEntities
prompt_library.extract_nodes.extract_text(context),
response_model=ExtractedEntities,
)
elif episode.source == EpisodeType.json:
llm_response = await llm_client.generate_response(
prompt_library.extract_nodes.extract_json(context), response_model=ExtractedEntities
prompt_library.extract_nodes.extract_json(context),
response_model=ExtractedEntities,
)
response_object = ExtractedEntities(**llm_response)
@ -142,56 +157,57 @@ async def extract_nodes(
entities_missed = len(missing_entities) != 0
custom_prompt = 'Make sure that the following entities are extracted: '
custom_prompt = "Make sure that the following entities are extracted: "
for entity in missing_entities:
custom_prompt += f'\n{entity},'
custom_prompt += f"\n{entity},"
filtered_extracted_entities = [entity for entity in extracted_entities if entity.name.strip()]
filtered_extracted_entities = [
entity for entity in extracted_entities if entity.name.strip()
]
end = time()
logger.debug(f'Extracted new nodes: {filtered_extracted_entities} in {(end - start) * 1000} ms')
logger.debug(
f"Extracted new nodes: {filtered_extracted_entities} in {(end - start) * 1000} ms"
)
# Convert the extracted data into EntityNode objects
extracted_nodes = []
for extracted_entity in filtered_extracted_entities:
type_id = extracted_entity.entity_type_id
if 0 <= type_id < len(entity_types_context):
entity_type_name = entity_types_context[extracted_entity.entity_type_id].get(
'entity_type_name'
)
entity_type_name = entity_types_context[
extracted_entity.entity_type_id
].get("entity_type_name")
else:
entity_type_name = 'Entity'
entity_type_name = "Entity"
# Check if this entity type should be excluded
if excluded_entity_types and entity_type_name in excluded_entity_types:
logger.debug(f'Excluding entity "{extracted_entity.name}" of type "{entity_type_name}"')
logger.debug(
f'Excluding entity "{extracted_entity.name}" of type "{entity_type_name}"'
)
continue
labels: list[str] = list({'Entity', str(entity_type_name)})
labels: list[str] = list({"Entity", str(entity_type_name)})
new_node = EntityNode(
name=extracted_entity.name,
group_id=episode.group_id,
labels=labels,
summary='',
summary="",
created_at=utc_now(),
)
extracted_nodes.append(new_node)
logger.debug(f'Created new node: {new_node.name} (UUID: {new_node.uuid})')
logger.debug(f"Created new node: {new_node.name} (UUID: {new_node.uuid})")
logger.debug(f'Extracted nodes: {[(n.name, n.uuid) for n in extracted_nodes]}')
logger.debug(f"Extracted nodes: {[(n.name, n.uuid) for n in extracted_nodes]}")
return extracted_nodes
async def resolve_extracted_nodes(
async def _collect_candidate_nodes(
clients: GraphitiClients,
extracted_nodes: list[EntityNode],
episode: EpisodicNode | None = None,
previous_episodes: list[EpisodicNode] | None = None,
entity_types: dict[str, type[BaseModel]] | None = None,
existing_nodes_override: list[EntityNode] | None = None,
) -> tuple[list[EntityNode], dict[str, str], list[tuple[EntityNode, EntityNode]]]:
llm_client = clients.llm_client
driver = clients.driver
existing_nodes_override: list[EntityNode] | None,
) -> list[EntityNode]:
"""Search per extracted name and return unique candidates with overrides honored in order."""
search_results: list[SearchResults] = await semaphore_gather(
*[
search(
@ -205,54 +221,79 @@ async def resolve_extracted_nodes(
]
)
candidate_nodes: list[EntityNode] = (
[node for result in search_results for node in result.nodes]
if existing_nodes_override is None
else existing_nodes_override
candidate_nodes: list[EntityNode] = [
node for result in search_results for node in result.nodes
]
if existing_nodes_override is not None:
candidate_nodes.extend(existing_nodes_override)
seen_candidate_uuids: set[str] = set()
ordered_candidates: list[EntityNode] = []
for candidate in candidate_nodes:
if candidate.uuid in seen_candidate_uuids:
continue
seen_candidate_uuids.add(candidate.uuid)
ordered_candidates.append(candidate)
return ordered_candidates
async def _resolve_with_llm(
llm_client: LLMClient,
extracted_nodes: list[EntityNode],
indexes: DedupCandidateIndexes,
state: DedupResolutionState,
ensure_ascii: bool,
episode: EpisodicNode | None,
previous_episodes: list[EpisodicNode] | None,
entity_types: dict[str, type[BaseModel]] | None,
) -> None:
"""Escalate unresolved nodes to the dedupe prompt so the LLM can select or reject duplicates."""
if not state.unresolved_indices:
return
entity_types_dict: dict[str, type[BaseModel]] = (
entity_types if entity_types is not None else {}
)
existing_nodes_dict: dict[str, EntityNode] = {node.uuid: node for node in candidate_nodes}
llm_extracted_nodes = [extracted_nodes[i] for i in state.unresolved_indices]
existing_nodes: list[EntityNode] = list(existing_nodes_dict.values())
existing_nodes_context = (
[
{
**{
'idx': i,
'name': candidate.name,
'entity_types': candidate.labels,
},
**candidate.attributes,
}
for i, candidate in enumerate(existing_nodes)
],
)
entity_types_dict: dict[str, type[BaseModel]] = entity_types if entity_types is not None else {}
# Prepare context for LLM
extracted_nodes_context = [
{
'id': i,
'name': node.name,
'entity_type': node.labels,
'entity_type_description': entity_types_dict.get(
next((item for item in node.labels if item != 'Entity'), '')
"id": i,
"name": node.name,
"entity_type": node.labels,
"entity_type_description": entity_types_dict.get(
next((item for item in node.labels if item != "Entity"), "")
).__doc__
or 'Default Entity Type',
or "Default Entity Type",
}
for i, node in enumerate(extracted_nodes)
for i, node in enumerate(llm_extracted_nodes)
]
existing_nodes_context = [
{
**{
"idx": i,
"name": candidate.name,
"entity_types": candidate.labels,
},
**candidate.attributes,
}
for i, candidate in enumerate(indexes.existing_nodes)
]
context = {
'extracted_nodes': extracted_nodes_context,
'existing_nodes': existing_nodes_context,
'episode_content': episode.content if episode is not None else '',
'previous_episodes': [ep.content for ep in previous_episodes]
if previous_episodes is not None
else [],
'ensure_ascii': clients.ensure_ascii,
"extracted_nodes": extracted_nodes_context,
"existing_nodes": existing_nodes_context,
"episode_content": episode.content if episode is not None else "",
"previous_episodes": (
[ep.content for ep in previous_episodes]
if previous_episodes is not None
else []
),
"ensure_ascii": ensure_ascii,
}
llm_response = await llm_client.generate_response(
@ -260,35 +301,85 @@ async def resolve_extracted_nodes(
response_model=NodeResolutions,
)
node_resolutions: list[NodeDuplicate] = NodeResolutions(**llm_response).entity_resolutions
node_resolutions: list[NodeDuplicate] = NodeResolutions(
**llm_response
).entity_resolutions
resolved_nodes: list[EntityNode] = []
uuid_map: dict[str, str] = {}
node_duplicates: list[tuple[EntityNode, EntityNode]] = []
for resolution in node_resolutions:
resolution_id: int = resolution.id
relative_id: int = resolution.id
duplicate_idx: int = resolution.duplicate_idx
extracted_node = extracted_nodes[resolution_id]
original_index = state.unresolved_indices[relative_id]
extracted_node = extracted_nodes[original_index]
resolved_node = (
existing_nodes[duplicate_idx]
if 0 <= duplicate_idx < len(existing_nodes)
indexes.existing_nodes[duplicate_idx]
if 0 <= duplicate_idx < len(indexes.existing_nodes)
else extracted_node
)
# resolved_node.name = resolution.get('name')
state.resolved_nodes[original_index] = resolved_node
state.uuid_map[extracted_node.uuid] = resolved_node.uuid
resolved_nodes.append(resolved_node)
uuid_map[extracted_node.uuid] = resolved_node.uuid
logger.debug(f'Resolved nodes: {[(n.name, n.uuid) for n in resolved_nodes]}')
async def resolve_extracted_nodes(
clients: GraphitiClients,
extracted_nodes: list[EntityNode],
episode: EpisodicNode | None = None,
previous_episodes: list[EpisodicNode] | None = None,
entity_types: dict[str, type[BaseModel]] | None = None,
existing_nodes_override: list[EntityNode] | None = None,
) -> tuple[list[EntityNode], dict[str, str], list[tuple[EntityNode, EntityNode]]]:
"""Search for existing nodes, resolve deterministic matches, then escalate holdouts to the LLM dedupe prompt."""
llm_client = clients.llm_client
driver = clients.driver
existing_nodes = await _collect_candidate_nodes(
clients,
extracted_nodes,
existing_nodes_override,
)
new_node_duplicates: list[
tuple[EntityNode, EntityNode]
] = await filter_existing_duplicate_of_edges(driver, node_duplicates)
indexes: DedupCandidateIndexes = _build_candidate_indexes(existing_nodes)
return resolved_nodes, uuid_map, new_node_duplicates
state = DedupResolutionState(
resolved_nodes=[None] * len(extracted_nodes),
uuid_map={},
unresolved_indices=[],
)
node_duplicates: list[tuple[EntityNode, EntityNode]] = []
_resolve_with_similarity(extracted_nodes, indexes, state)
await _resolve_with_llm(
llm_client,
extracted_nodes,
indexes,
state,
clients.ensure_ascii,
episode,
previous_episodes,
entity_types,
)
for idx, node in enumerate(extracted_nodes):
if state.resolved_nodes[idx] is None:
state.resolved_nodes[idx] = node
state.uuid_map[node.uuid] = node.uuid
logger.debug(
"Resolved nodes: %s",
[(node.name, node.uuid) for node in state.resolved_nodes if node is not None],
)
new_node_duplicates: list[tuple[EntityNode, EntityNode]] = (
await filter_existing_duplicate_of_edges(driver, node_duplicates)
)
return (
[node for node in state.resolved_nodes if node is not None],
state.uuid_map,
new_node_duplicates,
)
async def extract_attributes_from_nodes(
@ -307,9 +398,13 @@ async def extract_attributes_from_nodes(
node,
episode,
previous_episodes,
entity_types.get(next((item for item in node.labels if item != 'Entity'), ''))
if entity_types is not None
else None,
(
entity_types.get(
next((item for item in node.labels if item != "Entity"), "")
)
if entity_types is not None
else None
),
clients.ensure_ascii,
)
for node in nodes
@ -330,28 +425,32 @@ async def extract_attributes_from_node(
ensure_ascii: bool = False,
) -> EntityNode:
node_context: dict[str, Any] = {
'name': node.name,
'summary': node.summary,
'entity_types': node.labels,
'attributes': node.attributes,
"name": node.name,
"summary": node.summary,
"entity_types": node.labels,
"attributes": node.attributes,
}
attributes_context: dict[str, Any] = {
'node': node_context,
'episode_content': episode.content if episode is not None else '',
'previous_episodes': [ep.content for ep in previous_episodes]
if previous_episodes is not None
else [],
'ensure_ascii': ensure_ascii,
"node": node_context,
"episode_content": episode.content if episode is not None else "",
"previous_episodes": (
[ep.content for ep in previous_episodes]
if previous_episodes is not None
else []
),
"ensure_ascii": ensure_ascii,
}
summary_context: dict[str, Any] = {
'node': node_context,
'episode_content': episode.content if episode is not None else '',
'previous_episodes': [ep.content for ep in previous_episodes]
if previous_episodes is not None
else [],
'ensure_ascii': ensure_ascii,
"node": node_context,
"episode_content": episode.content if episode is not None else "",
"previous_episodes": (
[ep.content for ep in previous_episodes]
if previous_episodes is not None
else []
),
"ensure_ascii": ensure_ascii,
}
has_entity_attributes: bool = bool(
@ -379,7 +478,7 @@ async def extract_attributes_from_node(
if has_entity_attributes and entity_type is not None:
entity_type(**llm_response)
node.summary = summary_response.get('summary', '')
node.summary = summary_response.get("summary", "")
node_attributes = {key: value for key, value in llm_response.items()}
node.attributes.update(node_attributes)

View file

@ -26,6 +26,7 @@ from graphiti_core.nodes import CommunityNode, EntityNode, EpisodeType, Episodic
from tests.helpers_test import get_edge_count, get_node_count, group_id
pytest_plugins = ('pytest_asyncio',)
pytestmark = pytest.mark.integration
def setup_logging():

View file

@ -33,6 +33,8 @@ from tests.helpers_test import (
group_id,
)
pytestmark = pytest.mark.integration
created_at = datetime.now()
deleted_at = created_at + timedelta(days=3)
valid_at = created_at + timedelta(days=1)

View file

@ -0,0 +1,320 @@
from collections import defaultdict
from unittest.mock import AsyncMock, MagicMock
import pytest
from graphiti_core.graphiti_types import GraphitiClients
from graphiti_core.nodes import EntityNode, EpisodeType, EpisodicNode
from graphiti_core.search.search_config import SearchResults
from graphiti_core.utils.datetime_utils import utc_now
from graphiti_core.utils.maintenance.dedup_helpers import (
DedupCandidateIndexes,
DedupResolutionState,
_build_candidate_indexes,
_cached_shingles,
_has_high_entropy,
_hash_shingle,
_jaccard_similarity,
_lsh_bands,
_minhash_signature,
_name_entropy,
_normalize_name_exact,
_normalize_name_for_fuzzy,
_resolve_with_similarity,
_shingles,
)
from graphiti_core.utils.maintenance.node_operations import (
_collect_candidate_nodes,
_resolve_with_llm,
resolve_extracted_nodes,
)
def _make_clients():
driver = MagicMock()
embedder = MagicMock()
cross_encoder = MagicMock()
llm_client = MagicMock()
llm_generate = AsyncMock()
llm_client.generate_response = llm_generate
clients = GraphitiClients.model_construct( # bypass validation to allow test doubles
driver=driver,
embedder=embedder,
cross_encoder=cross_encoder,
llm_client=llm_client,
ensure_ascii=False,
)
return clients, llm_generate
def _make_episode(group_id: str = 'group'):
return EpisodicNode(
name='episode',
group_id=group_id,
source=EpisodeType.message,
source_description='test',
content='content',
valid_at=utc_now(),
)
@pytest.mark.asyncio
async def test_resolve_nodes_exact_match_skips_llm(monkeypatch):
clients, llm_generate = _make_clients()
candidate = EntityNode(name='Joe Michaels', group_id='group', labels=['Entity'])
extracted = EntityNode(name='Joe Michaels', group_id='group', labels=['Entity'])
async def fake_search(*_, **__):
return SearchResults(nodes=[candidate])
monkeypatch.setattr(
'graphiti_core.utils.maintenance.node_operations.search',
fake_search,
)
monkeypatch.setattr(
'graphiti_core.utils.maintenance.node_operations.filter_existing_duplicate_of_edges',
AsyncMock(return_value=[]),
)
resolved, uuid_map, _ = await resolve_extracted_nodes(
clients,
[extracted],
episode=_make_episode(),
previous_episodes=[],
)
assert resolved[0].uuid == candidate.uuid
assert uuid_map[extracted.uuid] == candidate.uuid
llm_generate.assert_not_awaited()
@pytest.mark.asyncio
async def test_resolve_nodes_low_entropy_uses_llm(monkeypatch):
clients, llm_generate = _make_clients()
llm_generate.return_value = {
'entity_resolutions': [
{
'id': 0,
'duplicate_idx': -1,
'name': 'Joe',
'duplicates': [],
}
]
}
extracted = EntityNode(name='Joe', group_id='group', labels=['Entity'])
async def fake_search(*_, **__):
return SearchResults(nodes=[])
monkeypatch.setattr(
'graphiti_core.utils.maintenance.node_operations.search',
fake_search,
)
monkeypatch.setattr(
'graphiti_core.utils.maintenance.node_operations.filter_existing_duplicate_of_edges',
AsyncMock(return_value=[]),
)
resolved, uuid_map, _ = await resolve_extracted_nodes(
clients,
[extracted],
episode=_make_episode(),
previous_episodes=[],
)
assert resolved[0].uuid == extracted.uuid
assert uuid_map[extracted.uuid] == extracted.uuid
llm_generate.assert_awaited()
@pytest.mark.asyncio
async def test_resolve_nodes_fuzzy_match(monkeypatch):
clients, llm_generate = _make_clients()
candidate = EntityNode(name='Joe-Michaels', group_id='group', labels=['Entity'])
extracted = EntityNode(name='Joe Michaels', group_id='group', labels=['Entity'])
async def fake_search(*_, **__):
return SearchResults(nodes=[candidate])
monkeypatch.setattr(
'graphiti_core.utils.maintenance.node_operations.search',
fake_search,
)
monkeypatch.setattr(
'graphiti_core.utils.maintenance.node_operations.filter_existing_duplicate_of_edges',
AsyncMock(return_value=[]),
)
resolved, uuid_map, _ = await resolve_extracted_nodes(
clients,
[extracted],
episode=_make_episode(),
previous_episodes=[],
)
assert resolved[0].uuid == candidate.uuid
assert uuid_map[extracted.uuid] == candidate.uuid
llm_generate.assert_not_awaited()
@pytest.mark.asyncio
async def test_collect_candidate_nodes_dedupes_and_merges_override(monkeypatch):
clients, _ = _make_clients()
candidate = EntityNode(name='Alice', group_id='group', labels=['Entity'])
override_duplicate = EntityNode(
uuid=candidate.uuid,
name='Alice Alt',
group_id='group',
labels=['Entity'],
)
extracted = EntityNode(name='Alice', group_id='group', labels=['Entity'])
search_mock = AsyncMock(return_value=SearchResults(nodes=[candidate]))
monkeypatch.setattr(
'graphiti_core.utils.maintenance.node_operations.search',
search_mock,
)
result = await _collect_candidate_nodes(
clients,
[extracted],
existing_nodes_override=[override_duplicate],
)
assert len(result) == 1
assert result[0].uuid == candidate.uuid
search_mock.assert_awaited()
def test_build_candidate_indexes_populates_structures():
candidate = EntityNode(name='Bob Dylan', group_id='group', labels=['Entity'])
indexes = _build_candidate_indexes([candidate])
normalized_key = candidate.name.lower()
assert indexes.normalized_existing[normalized_key][0].uuid == candidate.uuid
assert candidate.uuid in indexes.shingles_by_candidate
assert any(candidate.uuid in bucket for bucket in indexes.lsh_buckets.values())
def test_normalize_helpers():
assert _normalize_name_exact(' Alice Smith ') == 'alice smith'
assert _normalize_name_for_fuzzy('Alice-Smith!') == 'alice smith'
def test_name_entropy_variants():
assert _name_entropy('alice') > _name_entropy('aaaaa')
assert _name_entropy('') == 0.0
def test_has_high_entropy_rules():
assert _has_high_entropy('meaningful name') is True
assert _has_high_entropy('aa') is False
def test_shingles_and_cache():
raw = 'alice'
shingle_set = _shingles(raw)
assert shingle_set == {'ali', 'lic', 'ice'}
assert _cached_shingles(raw) == shingle_set
assert _cached_shingles(raw) is _cached_shingles(raw)
def test_hash_minhash_and_lsh():
shingles = {'abc', 'bcd', 'cde'}
signature = _minhash_signature(shingles)
assert len(signature) == 32
bands = _lsh_bands(signature)
assert all(len(band) == 4 for band in bands)
hashed = {_hash_shingle(s, 0) for s in shingles}
assert len(hashed) == len(shingles)
def test_jaccard_similarity_edges():
a = {'a', 'b'}
b = {'a', 'c'}
assert _jaccard_similarity(a, b) == pytest.approx(1 / 3)
assert _jaccard_similarity(set(), set()) == 1.0
assert _jaccard_similarity(a, set()) == 0.0
def test_resolve_with_similarity_exact_match_updates_state():
candidate = EntityNode(name='Charlie Parker', group_id='group', labels=['Entity'])
extracted = EntityNode(name='Charlie Parker', group_id='group', labels=['Entity'])
indexes = _build_candidate_indexes([candidate])
state = DedupResolutionState(resolved_nodes=[None], uuid_map={}, unresolved_indices=[])
_resolve_with_similarity([extracted], indexes, state)
assert state.resolved_nodes[0].uuid == candidate.uuid
assert state.uuid_map[extracted.uuid] == candidate.uuid
assert state.unresolved_indices == []
def test_resolve_with_similarity_low_entropy_defers_resolution():
extracted = EntityNode(name='Bob', group_id='group', labels=['Entity'])
indexes = DedupCandidateIndexes([], defaultdict(list), {}, defaultdict(list))
state = DedupResolutionState(resolved_nodes=[None], uuid_map={}, unresolved_indices=[])
_resolve_with_similarity([extracted], indexes, state)
assert state.resolved_nodes[0] is None
assert state.unresolved_indices == [0]
@pytest.mark.asyncio
async def test_resolve_with_llm_updates_unresolved(monkeypatch):
extracted = EntityNode(name='Dizzy', group_id='group', labels=['Entity'])
candidate = EntityNode(name='Dizzy Gillespie', group_id='group', labels=['Entity'])
indexes = _build_candidate_indexes([candidate])
state = DedupResolutionState(resolved_nodes=[None], uuid_map={}, unresolved_indices=[0])
captured_context = {}
def fake_prompt_nodes(context):
captured_context.update(context)
return ['prompt']
monkeypatch.setattr(
'graphiti_core.utils.maintenance.node_operations.prompt_library.dedupe_nodes.nodes',
fake_prompt_nodes,
)
async def fake_generate_response(*_, **__):
return {
'entity_resolutions': [
{
'id': 0,
'duplicate_idx': 0,
'name': 'Dizzy Gillespie',
'duplicates': [0],
}
]
}
llm_client = MagicMock()
llm_client.generate_response = AsyncMock(side_effect=fake_generate_response)
await _resolve_with_llm(
llm_client,
[extracted],
indexes,
state,
ensure_ascii=False,
episode=_make_episode(),
previous_episodes=[],
entity_types=None,
)
assert state.resolved_nodes[0].uuid == candidate.uuid
assert state.uuid_map[extracted.uuid] == candidate.uuid
assert captured_context['existing_nodes'][0]['idx'] == 0
assert isinstance(captured_context['existing_nodes'], list)