285 lines
13 KiB
Python
285 lines
13 KiB
Python
# from marvin import ai_classifier
|
|
# marvin.settings.openai.api_key = os.environ.get("OPENAI_API_KEY")
|
|
from cognitive_architecture.database.graph_database.graph import Neo4jGraphDB
|
|
from cognitive_architecture.database.postgres.models.memory import MemoryModel
|
|
|
|
import os
|
|
from dotenv import load_dotenv
|
|
|
|
from level_4.cognitive_architecture.database.postgres.database_crud import session_scope
|
|
from cognitive_architecture.database.postgres.database import AsyncSessionLocal
|
|
|
|
import instructor
|
|
from openai import OpenAI
|
|
|
|
# Adds response_model to ChatCompletion
|
|
# Allows the return of Pydantic model rather than raw JSON
|
|
instructor.patch(OpenAI())
|
|
DEFAULT_PRESET = "promethai_chat"
|
|
preset_options = [DEFAULT_PRESET]
|
|
PROMETHAI_DIR = os.path.join(os.path.expanduser("~"), ".")
|
|
load_dotenv()
|
|
|
|
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
|
|
from cognitive_architecture.config import Config
|
|
|
|
config = Config()
|
|
config.load()
|
|
|
|
print(config.model)
|
|
print(config.openai_key)
|
|
|
|
|
|
import logging
|
|
|
|
from sqlalchemy.ext.asyncio import AsyncSession
|
|
from sqlalchemy.future import select
|
|
|
|
async def get_vectordb_namespace(session: AsyncSession, user_id: str):
|
|
try:
|
|
result = await session.execute(
|
|
select(MemoryModel.memory_name).where(MemoryModel.user_id == user_id).order_by(MemoryModel.created_at.desc())
|
|
)
|
|
namespace = [row[0] for row in result.fetchall()]
|
|
return namespace
|
|
except Exception as e:
|
|
logging.error(f"An error occurred while retrieving the Vectordb_namespace: {str(e)}")
|
|
return None
|
|
|
|
# async def retrieve_job_by_id(session, user_id, job_id):
|
|
# try:
|
|
# result = await session.execute(
|
|
# session.query(Session.id)
|
|
# .filter_by(user_id=user_id, id=job_id)
|
|
# .order_by(Session.created_at)
|
|
# )
|
|
# return result.scalar_one_or_none()
|
|
# except Exception as e:
|
|
# logging.error(f"An error occurred while retrieving the job: {str(e)}")
|
|
# return None
|
|
|
|
|
|
|
|
|
|
async def update_document_vectordb_namespace(postgres_session: AsyncSession, user_id: str, namespace: str = None):
|
|
"""
|
|
Update the Document node with the Vectordb_namespace for the given user. If the namespace is not provided,
|
|
it will be retrieved from the PostgreSQL database.
|
|
|
|
Args:
|
|
postgres_session (AsyncSession): The async session for connecting to the PostgreSQL database.
|
|
user_id (str): The user's unique identifier.
|
|
namespace (str, optional): The Vectordb_namespace. If None, it will be retrieved from the database.
|
|
|
|
Returns:
|
|
The result of the update operation or None if an error occurred.
|
|
"""
|
|
vectordb_namespace = namespace
|
|
|
|
# Retrieve namespace from the database if not provided
|
|
if vectordb_namespace is None:
|
|
vectordb_namespace = await get_vectordb_namespace(postgres_session, user_id)
|
|
if not vectordb_namespace:
|
|
logging.error("Vectordb_namespace could not be retrieved.")
|
|
return None
|
|
from cognitive_architecture.database.graph_database.graph import Neo4jGraphDB
|
|
# Example initialization (replace with your actual connection details)
|
|
neo4j_graph_db = Neo4jGraphDB(url='bolt://localhost:7687', username='neo4j', password='pleaseletmein')
|
|
results = []
|
|
for namespace in vectordb_namespace:
|
|
update_result = neo4j_graph_db.update_document_node_with_namespace(user_id, namespace)
|
|
results.append(update_result)
|
|
return results
|
|
|
|
|
|
|
|
|
|
# query_input = "I walked in the forest yesterday and added to my list I need to buy some milk in the store"
|
|
#
|
|
# # Generate the knowledge graph from the user input
|
|
# knowledge_graph = generate_graph(query_input)
|
|
# visualize_knowledge_graph(knowledge_graph)
|
|
# # out = knowledge_graph.dict()
|
|
# # print(out)
|
|
# #
|
|
# graph: KnowledgeGraph = generate_graph("I walked in the forest yesterday and added to my list I need to buy some milk in the store")
|
|
# graph_dic = graph.dict()
|
|
#
|
|
# node_variable_mapping = create_node_variable_mapping(graph_dic['nodes'])
|
|
# edge_variable_mapping = create_edge_variable_mapping(graph_dic['edges'])
|
|
# # Create unique variable names for each node
|
|
# unique_node_variable_mapping = append_uuid_to_variable_names(node_variable_mapping)
|
|
# unique_edge_variable_mapping = append_uuid_to_variable_names(edge_variable_mapping)
|
|
# create_nodes_statements = generate_create_statements_for_nodes_with_uuid(graph_dic['nodes'], unique_node_variable_mapping)
|
|
# create_edges_statements = generate_create_statements_for_edges_with_uuid(graph_dic['edges'], unique_node_variable_mapping)
|
|
#
|
|
# memory_type_statements_with_uuid_and_time_context = generate_memory_type_relationships_with_uuid_and_time_context(
|
|
# graph_dic['nodes'], unique_node_variable_mapping)
|
|
#
|
|
# # # Combine all statements
|
|
# cypher_statements = [create_base_queries_from_user(user_id)] + create_nodes_statements + create_edges_statements + memory_type_statements_with_uuid_and_time_context
|
|
# cypher_statements_joined = "\n".join(cypher_statements)
|
|
#
|
|
#
|
|
#
|
|
# execute_cypher_query(cypher_statements_joined)
|
|
|
|
# bartleby_summary = {
|
|
# "document_category": "Classic Literature",
|
|
# "title": "Bartleby, the Scrivener",
|
|
# "summary": (
|
|
# "Bartleby, the Scrivener: A Story of Wall Street' is a short story by Herman Melville "
|
|
# "that tells the tale of Bartleby, a scrivener, or copyist, who works for a Manhattan "
|
|
# "lawyer. Initially, Bartleby is a competent and industrious worker. However, one day, "
|
|
# "when asked to proofread a document, he responds with what becomes his constant refrain "
|
|
# "to any request: 'I would prefer not to.' As the story progresses, Bartleby becomes "
|
|
# "increasingly passive, refusing not just work but also food and eventually life itself, "
|
|
# "as he spirals into a state of passive resistance. The lawyer, the narrator of the story, "
|
|
# "is both fascinated and frustrated by Bartleby's behavior. Despite attempts to understand "
|
|
# "and help him, Bartleby remains an enigmatic figure, his motives and thoughts unexplained. "
|
|
# "He is eventually evicted from the office and later found dead in a prison yard, having "
|
|
# "preferred not to live. The story is a meditation on the themes of isolation, societal "
|
|
# "obligation, and the inexplicable nature of human behavior."
|
|
# )
|
|
# }
|
|
# rs = create_document_node_cypher(bartleby_summary, user_id)
|
|
#
|
|
# parameters = {
|
|
# 'user_id': user_id,
|
|
# 'title': bartleby_summary['title'],
|
|
# 'summary': bartleby_summary['summary'],
|
|
# 'document_category': bartleby_summary['document_category']
|
|
# }
|
|
#
|
|
# execute_cypher_query(rs, parameters)
|
|
from cognitive_architecture.database.postgres.database_crud import fetch_job_id
|
|
import uuid
|
|
from cognitive_architecture.database.postgres.models.sessions import Session
|
|
from cognitive_architecture.database.postgres.models.operation import Operation
|
|
from cognitive_architecture.database.postgres.database_crud import session_scope, add_entity, update_entity, fetch_job_id
|
|
from cognitive_architecture.database.postgres.models.metadatas import MetaDatas
|
|
from cognitive_architecture.database.postgres.models.testset import TestSet
|
|
from cognitive_architecture.database.postgres.models.testoutput import TestOutput
|
|
from cognitive_architecture.database.postgres.models.docs import DocsModel
|
|
from cognitive_architecture.database.postgres.models.memory import MemoryModel
|
|
async def main():
|
|
user_id = "user"
|
|
|
|
async with session_scope(AsyncSessionLocal()) as session:
|
|
# out = await get_vectordb_namespace(session, user_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# print(out)
|
|
|
|
# job_id = ""
|
|
# job_id = await fetch_job_id(session, user_id=user_id, job_id=job_id)
|
|
# if job_id is None:
|
|
# job_id = str(uuid.uuid4())
|
|
#
|
|
# await add_entity(
|
|
# session,
|
|
# Operation(
|
|
# id=job_id,
|
|
# user_id=user_id,
|
|
# operation_params="",
|
|
# number_of_files=2,
|
|
# operation_status = "RUNNING",
|
|
# operation_type="",
|
|
# test_set_id="",
|
|
# ),
|
|
# )
|
|
|
|
# await update_document_vectordb_namespace(session, user_id)
|
|
# from cognitive_architecture.graph_database.graph import Neo4jGraphDB
|
|
# # Example initialization (replace with your actual connection details)
|
|
neo4j_graph_db = Neo4jGraphDB(url='bolt://localhost:7687', username='neo4j', password='pleaseletmein')
|
|
# # Generate the Cypher query for a specific user
|
|
# user_id = 'user123' # Replace with the actual user ID
|
|
cypher_query = await neo4j_graph_db.generate_cypher_query_for_user_prompt_decomposition(user_id,"I walked in the forest yesterday and added to my list I need to buy some milk in the store")
|
|
# result = neo4j_graph_db.query(cypher_query)
|
|
call_of_the_wild_summary = {
|
|
"user_id": user_id,
|
|
"document_category": "Classic Literature",
|
|
"title": "The Call of the Wild",
|
|
"summary": (
|
|
"'The Call of the Wild' is a novel by Jack London set in the Yukon during the 1890s Klondike "
|
|
"Gold Rush—a period when strong sled dogs were in high demand. The novel's central character "
|
|
"is a dog named Buck, a domesticated dog living at a ranch in the Santa Clara Valley of California "
|
|
"as the story opens. Stolen from his home and sold into the brutal existence of an Alaskan sled dog, "
|
|
"he reverts to atavistic traits. Buck is forced to adjust to, and survive, cruel treatments and fight "
|
|
"to dominate other dogs in a harsh climate. Eventually, he sheds the veneer of civilization, relying "
|
|
"on primordial instincts and lessons he learns, to emerge as a leader in the wild. London drew on his "
|
|
"own experiences in the Klondike, and the book provides a snapshot of the epical gold rush and the "
|
|
"harsh realities of life in the wilderness. The novel explores themes of morality versus instinct, "
|
|
"the struggle for survival in the natural world, and the intrusion of civilization on the wilderness. "
|
|
"As Buck's wild nature is awakened, he rises to become a respected and feared leader in the wild, "
|
|
"answering the primal call of nature."
|
|
)
|
|
}
|
|
rs = neo4j_graph_db.create_document_node_cypher(call_of_the_wild_summary, user_id)
|
|
|
|
neo4j_graph_db.query(rs, call_of_the_wild_summary)
|
|
print(cypher_query)
|
|
|
|
neo4j_graph_db.update_document_node_with_namespace(user_id, document_title="The Call of the Wild")
|
|
|
|
|
|
|
|
# await update_document_vectordb_namespace(session, user_id)
|
|
# # Execute the generated Cypher query
|
|
# result = neo4j_graph_db.query(cypher_query)
|
|
|
|
|
|
|
|
params = {
|
|
"version": "1.0",
|
|
"agreement_id": "AG123456",
|
|
"privacy_policy": "https://example.com/privacy",
|
|
"terms_of_service": "https://example.com/terms",
|
|
"format": "json",
|
|
"schema_version": "1.1",
|
|
"checksum": "a1b2c3d4e5f6",
|
|
"owner": "John Doe",
|
|
"license": "MIT",
|
|
"validity_start": "2023-08-01",
|
|
"validity_end": "2024-07-31",
|
|
}
|
|
loader_settings = {
|
|
"format": "PDF",
|
|
"source": "URL",
|
|
"path": "https://www.ibiblio.org/ebooks/London/Call%20of%20Wild.pdf",
|
|
}
|
|
# memory_instance = Memory(namespace='SEMANTICMEMORY')
|
|
# sss = await memory_instance.dynamic_method_call(memory_instance.semantic_memory_class, 'fetch_memories', observation='some_observation')
|
|
# from cognitive_architecture.vectorstore_manager import Memory
|
|
#
|
|
#
|
|
# memory = await Memory.create_memory("676", session, namespace="SEMANTICMEMORY")
|
|
#
|
|
# # Adding a memory instance
|
|
# await memory.add_memory_instance("ExampleMemory")
|
|
#
|
|
# # Managing memory attributes
|
|
# existing_user = await Memory.check_existing_user("676", session)
|
|
# print("here is the existing user", existing_user)
|
|
# await memory.manage_memory_attributes(existing_user)
|
|
# # aeehuvyq_semanticememory_class
|
|
#
|
|
# await memory.add_dynamic_memory_class("semanticmemory", "SEMANTICMEMORY")
|
|
# await memory.add_method_to_class(memory.semanticmemory_class, "add_memories")
|
|
# # await memory.add_method_to_class(memory.semanticmemory_class, "fetch_memories")
|
|
# sss = await memory.dynamic_method_call(memory.semanticmemory_class, 'add_memories',
|
|
# observation='some_observation', params=params, loader_settings=loader_settings)
|
|
|
|
# print(rs)
|
|
|
|
if __name__ == "__main__":
|
|
import asyncio
|
|
|
|
asyncio.run(main())
|
|
|
|
|