Added initial API logic, crud for graph, connected vectordb and graph

This commit is contained in:
Vasilije 2023-11-13 23:17:25 +01:00
parent ceba0d31e7
commit fe78d4e711
30 changed files with 7099 additions and 296 deletions

View file

@ -43,9 +43,8 @@ RUN apt-get update -q && \
WORKDIR /app
COPY cognitive_architecture/ /app
COPY cognitive_architecture/scripts/ /app
COPY cognitive_architecture/entrypoint.sh /app/entrypoint.sh
COPY cognitive_architecture/scripts/create_database.py /app/create_database.py
RUN chmod +x /app/entrypoint.sh
ENTRYPOINT ["/app/entrypoint.sh"]

View file

@ -0,0 +1,521 @@
import json
import logging
import os
from enum import Enum
from typing import Dict, Any
import uvicorn
from fastapi import FastAPI, BackgroundTasks, HTTPException
from fastapi.responses import JSONResponse
from pydantic import BaseModel
from database.postgres.database import AsyncSessionLocal
from database.postgres.database_crud import session_scope
from vectorstore_manager import Memory
from dotenv import load_dotenv
# Set up logging
logging.basicConfig(
level=logging.INFO, # Set the logging level (e.g., DEBUG, INFO, WARNING, ERROR, CRITICAL)
format="%(asctime)s [%(levelname)s] %(message)s", # Set the log message format
)
logger = logging.getLogger(__name__)
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
app = FastAPI(debug=True)
#
# from auth.cognito.JWTBearer import JWTBearer
# from auth.auth import jwks
#
# auth = JWTBearer(jwks)
from fastapi import Depends
from config import Config
config = Config()
config.load()
class ImageResponse(BaseModel):
success: bool
message: str
@app.get(
"/",
)
async def root():
"""
Root endpoint that returns a welcome message.
"""
return {"message": "Hello, World, I am alive!"}
@app.get("/health")
def health_check():
"""
Health check endpoint that returns the server status.
"""
return {"status": "OK"}
class Payload(BaseModel):
payload: Dict[str, Any]
def memory_factory(memory_type):
load_dotenv()
class Payload(BaseModel):
payload: Dict[str, Any]
@app.post("/{memory_type}/add-memory", response_model=dict)
async def add_memory(
payload: Payload,
# files: List[UploadFile] = File(...),
):
try:
logging.info(" Adding to Memory ")
decoded_payload = payload.payload
async with session_scope(session=AsyncSessionLocal()) as session:
memory = await Memory.create_memory(
decoded_payload["user_id"], session,"SEMANTICMEMORY", namespace="SEMANTICMEMORY"
)
# Adding a memory instance
await memory.add_memory_instance(decoded_payload["memory_object"])
# Managing memory attributes
existing_user = await Memory.check_existing_user(
decoded_payload["user_id"], session
)
await memory.manage_memory_attributes(existing_user)
await memory.add_dynamic_memory_class(
decoded_payload["memory_object"],
decoded_payload["memory_object"].upper(),
)
memory_class = decoded_payload["memory_object"] + "_class"
dynamic_memory_class = getattr(memory, memory_class.lower(), None)
await memory.add_method_to_class(dynamic_memory_class, "add_memories")
# await memory.add_method_to_class(memory.semanticmemory_class, 'fetch_memories')
output = await memory.dynamic_method_call(
dynamic_memory_class,
"add_memories",
observation="some_observation",
params=decoded_payload["params"],
loader_settings=decoded_payload["loader_settings"],
)
return JSONResponse(content={"response": output}, status_code=200)
except Exception as e:
return JSONResponse(
content={"response": {"error": str(e)}}, status_code=503
)
@app.post("/user-to-graph-query")
async def generate_cypher_query(payload: Payload,):
try:
from database.graph_database.graph import Neo4jGraphDB
neo4j_graph_db = Neo4jGraphDB(config.graph_database_url, config.graph_database_username, config.graph_database_password)
decoded_payload = payload.payload
cypher_query = await neo4j_graph_db.generate_cypher_query_for_user_prompt_decomposition(decoded_payload['user_id'],
decoded_payload['prompt'])
# Execute the query - replace this with the actual execution method
async with session_scope(session=AsyncSessionLocal()) as session:
# Assuming you have a method in Neo4jGraphDB to execute the query
result = await neo4j_graph_db.query(cypher_query, session)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/user-to-document-summary")
async def generate_document_summary(payload: Payload,):
try:
from database.graph_database.graph import Neo4jGraphDB
neo4j_graph_db = Neo4jGraphDB(config.graph_database_url, config.graph_database_username, config.graph_database_password)
decoded_payload = payload.payload
call_of_the_wild_summary = {
"user_id": decoded_payload["user_id"],
"document_category": "Classic Literature",
"title": "The Call of the Wild",
"summary": (
"'The Call of the Wild' is a novel by Jack London set in the Yukon during the 1890s Klondike "
"Gold Rush—a period when strong sled dogs were in high demand. The novel's central character "
"is a dog named Buck, a domesticated dog living at a ranch in the Santa Clara Valley of California "
"as the story opens. Stolen from his home and sold into the brutal existence of an Alaskan sled dog, "
"he reverts to atavistic traits. Buck is forced to adjust to, and survive, cruel treatments and fight "
"to dominate other dogs in a harsh climate. Eventually, he sheds the veneer of civilization, relying "
"on primordial instincts and lessons he learns, to emerge as a leader in the wild. London drew on his "
"own experiences in the Klondike, and the book provides a snapshot of the epical gold rush and the "
"harsh realities of life in the wilderness. The novel explores themes of morality versus instinct, "
"the struggle for survival in the natural world, and the intrusion of civilization on the wilderness. "
"As Buck's wild nature is awakened, he rises to become a respected and feared leader in the wild, "
"answering the primal call of nature."
)
}
cypher_query = neo4j_graph_db.create_document_node_cypher(call_of_the_wild_summary, decoded_payload['user_id'])
neo4j_graph_db.query(cypher_query, call_of_the_wild_summary)
# Execute the query - replace this with the actual execution method
async with session_scope(session=AsyncSessionLocal()) as session:
# Assuming you have a method in Neo4jGraphDB to execute the query
result = await neo4j_graph_db.query(cypher_query, session)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/user-document-vectordb")
async def generate_document_to_vector_db(payload: Payload, ):
try:
from database.graph_database.graph import Neo4jGraphDB
neo4j_graph_db = Neo4jGraphDB(config.graph_database_url, config.graph_database_username,
config.graph_database_password)
decoded_payload = payload.payload
neo4j_graph_db.update_document_node_with_namespace(decoded_payload['user_id'], document_title="The Call of the Wild")
# Execute the query - replace this with the actual execution method
# async with session_scope(session=AsyncSessionLocal()) as session:
# # Assuming you have a method in Neo4jGraphDB to execute the query
# result = await neo4j_graph_db.query(cypher_query, session)
#
# return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/{memory_type}/fetch-memory", response_model=dict)
async def fetch_memory(
payload: Payload,
# files: List[UploadFile] = File(...),
):
try:
logging.info(" Adding to Memory ")
decoded_payload = payload.payload
async with session_scope(session=AsyncSessionLocal()) as session:
memory = await Memory.create_memory(
decoded_payload["user_id"], session, "SEMANTICMEMORY", namespace="SEMANTICMEMORY"
)
# Adding a memory instance
await memory.add_memory_instance(decoded_payload["memory_object"])
# Managing memory attributes
existing_user = await Memory.check_existing_user(
decoded_payload["user_id"], session
)
await memory.manage_memory_attributes(existing_user)
await memory.add_dynamic_memory_class(
decoded_payload["memory_object"],
decoded_payload["memory_object"].upper(),
)
memory_class = decoded_payload["memory_object"] + "_class"
dynamic_memory_class = getattr(memory, memory_class.lower(), None)
await memory.add_method_to_class(dynamic_memory_class, "add_memories")
# await memory.add_method_to_class(memory.semanticmemory_class, 'fetch_memories')
output = await memory.dynamic_method_call(
dynamic_memory_class,
"fetch_memories",
observation=decoded_payload["observation"],
)
return JSONResponse(content={"response": output}, status_code=200)
except Exception as e:
return JSONResponse(
content={"response": {"error": str(e)}}, status_code=503
)
@app.post("/{memory_type}/delete-memory", response_model=dict)
async def delete_memory(
payload: Payload,
# files: List[UploadFile] = File(...),
):
try:
logging.info(" Adding to Memory ")
decoded_payload = payload.payload
async with session_scope(session=AsyncSessionLocal()) as session:
memory = await Memory.create_memory(
decoded_payload["user_id"], session, namespace="SEMANTICMEMORY"
)
# Adding a memory instance
await memory.add_memory_instance(decoded_payload["memory_object"])
# Managing memory attributes
existing_user = await Memory.check_existing_user(
decoded_payload["user_id"], session
)
await memory.manage_memory_attributes(existing_user)
await memory.add_dynamic_memory_class(
decoded_payload["memory_object"],
decoded_payload["memory_object"].upper(),
)
memory_class = decoded_payload["memory_object"] + "_class"
dynamic_memory_class = getattr(memory, memory_class.lower(), None)
await memory.add_method_to_class(
dynamic_memory_class, "delete_memories"
)
# await memory.add_method_to_class(memory.semanticmemory_class, 'fetch_memories')
output = await memory.dynamic_method_call(
dynamic_memory_class,
"delete_memories",
namespace=decoded_payload["memory_object"].upper(),
)
return JSONResponse(content={"response": output}, status_code=200)
except Exception as e:
return JSONResponse(
content={"response": {"error": str(e)}}, status_code=503
)
memory_list = [ "semantic"]
for memory_type in memory_list:
memory_factory(memory_type)
class TestSetType(Enum):
SAMPLE = "sample"
MANUAL = "manual"
def get_test_set(test_set_type, folder_path="example_data", payload=None):
if test_set_type == TestSetType.SAMPLE:
file_path = os.path.join(folder_path, "test_set.json")
if os.path.isfile(file_path):
with open(file_path, "r") as file:
return json.load(file)
elif test_set_type == TestSetType.MANUAL:
# Check if the manual test set is provided in the payload
if payload and "manual_test_set" in payload:
return payload["manual_test_set"]
else:
# Attempt to load the manual test set from a file
pass
return None
class MetadataType(Enum):
SAMPLE = "sample"
MANUAL = "manual"
def get_metadata(metadata_type, folder_path="example_data", payload=None):
if metadata_type == MetadataType.SAMPLE:
file_path = os.path.join(folder_path, "metadata.json")
if os.path.isfile(file_path):
with open(file_path, "r") as file:
return json.load(file)
elif metadata_type == MetadataType.MANUAL:
# Check if the manual metadata is provided in the payload
if payload and "manual_metadata" in payload:
return payload["manual_metadata"]
else:
pass
return None
# @app.post("/rag-test/rag_test_run", response_model=dict)
# async def rag_test_run(
# payload: Payload,
# background_tasks: BackgroundTasks,
# ):
# try:
# logging.info("Starting RAG Test")
# decoded_payload = payload.payload
# test_set_type = TestSetType(decoded_payload['test_set'])
#
# metadata_type = MetadataType(decoded_payload['metadata'])
#
# metadata = get_metadata(metadata_type, payload=decoded_payload)
# if metadata is None:
# return JSONResponse(content={"response": "Invalid metadata value"}, status_code=400)
#
# test_set = get_test_set(test_set_type, payload=decoded_payload)
# if test_set is None:
# return JSONResponse(content={"response": "Invalid test_set value"}, status_code=400)
#
# async def run_start_test(data, test_set, user_id, params, metadata, retriever_type):
# result = await start_test(data = data, test_set = test_set, user_id =user_id, params =params, metadata =metadata, retriever_type=retriever_type)
#
# logging.info("Retriever DATA type", type(decoded_payload['data']))
#
# background_tasks.add_task(
# run_start_test,
# decoded_payload['data'],
# test_set,
# decoded_payload['user_id'],
# decoded_payload['params'],
# metadata,
# decoded_payload['retriever_type']
# )
#
# logging.info("Retriever type", decoded_payload['retriever_type'])
# return JSONResponse(content={"response": "Task has been started"}, status_code=200)
#
# except Exception as e:
# return JSONResponse(
#
# content={"response": {"error": str(e)}}, status_code=503
#
# )
# @app.get("/rag-test/{task_id}")
# async def check_task_status(task_id: int):
# task_status = task_status_db.get(task_id, "not_found")
#
# if task_status == "not_found":
# return {"status": "Task not found"}
#
# return {"status": task_status}
# @app.get("/available-buffer-actions", response_model=dict)
# async def available_buffer_actions(
# payload: Payload,
# # files: List[UploadFile] = File(...),
# ):
# try:
# decoded_payload = payload.payload
#
# Memory_ = Memory(user_id=decoded_payload["user_id"])
#
# await Memory_.async_init()
#
# # memory_class = getattr(Memory_, f"_delete_{memory_type}_memory", None)
# output = await Memory_._available_operations()
# return JSONResponse(content={"response": output}, status_code=200)
#
# except Exception as e:
# return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
# @app.post("/run-buffer", response_model=dict)
# async def run_buffer(
# payload: Payload,
# # files: List[UploadFile] = File(...),
# ):
# try:
# decoded_payload = payload.payload
#
# Memory_ = Memory(user_id=decoded_payload["user_id"])
#
# await Memory_.async_init()
#
# # memory_class = getattr(Memory_, f"_delete_{memory_type}_memory", None)
# output = await Memory_._run_main_buffer(
# user_input=decoded_payload["prompt"], params=decoded_payload["params"], attention_modulators=decoded_payload["attention_modulators"]
# )
# return JSONResponse(content={"response": output}, status_code=200)
#
# except Exception as e:
# return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
#
#
# @app.post("/buffer/create-context", response_model=dict)
# async def create_context(
# payload: Payload,
# # files: List[UploadFile] = File(...),
# ):
# try:
# decoded_payload = payload.payload
#
# Memory_ = Memory(user_id=decoded_payload["user_id"])
#
# await Memory_.async_init()
#
# # memory_class = getattr(Memory_, f"_delete_{memory_type}_memory", None)
# output = await Memory_._create_buffer_context(
# user_input=decoded_payload["prompt"], params=decoded_payload["params"], attention_modulators=decoded_payload["attention_modulators"]
# )
# return JSONResponse(content={"response": output}, status_code=200)
#
# except Exception as e:
# return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
#
#
# @app.post("/buffer/get-tasks", response_model=dict)
# async def create_context(
# payload: Payload,
# # files: List[UploadFile] = File(...),
# ):
# try:
# decoded_payload = payload.payload
#
# Memory_ = Memory(user_id=decoded_payload["user_id"])
#
# await Memory_.async_init()
#
# # memory_class = getattr(Memory_, f"_delete_{memory_type}_memory", None)
# output = await Memory_._get_task_list(
# user_input=decoded_payload["prompt"], params=decoded_payload["params"], attention_modulators=decoded_payload["attention_modulators"]
# )
# return JSONResponse(content={"response": output}, status_code=200)
#
# except Exception as e:
# return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
#
#
# @app.post("/buffer/provide-feedback", response_model=dict)
# async def provide_feedback(
# payload: Payload,
# # files: List[UploadFile] = File(...),
# ):
# try:
# decoded_payload = payload.payload
#
# Memory_ = Memory(user_id=decoded_payload["user_id"])
#
# await Memory_.async_init()
#
# # memory_class = getattr(Memory_, f"_delete_{memory_type}_memory", None)
# if decoded_payload["total_score"] is None:
#
# output = await Memory_._provide_feedback(
# user_input=decoded_payload["prompt"], params=decoded_payload["params"], attention_modulators=None, total_score=decoded_payload["total_score"]
# )
# return JSONResponse(content={"response": output}, status_code=200)
# else:
# output = await Memory_._provide_feedback(
# user_input=decoded_payload["prompt"], params=decoded_payload["params"], attention_modulators=decoded_payload["attention_modulators"], total_score=None
# )
# return JSONResponse(content={"response": output}, status_code=200)
#
#
# except Exception as e:
# return JSONResponse(content={"response": {"error": str(e)}}, status_code=503)
def start_api_server(host: str = "0.0.0.0", port: int = 8000):
"""
Start the API server using uvicorn.
Parameters:
host (str): The host for the server.
port (int): The port for the server.
"""
try:
logger.info(f"Starting server at {host}:{port}")
uvicorn.run(app, host=host, port=port)
except Exception as e:
logger.exception(f"Failed to start server: {e}")
# Here you could add any cleanup code or error recovery code.
if __name__ == "__main__":
start_api_server()

View file

@ -23,6 +23,7 @@ class Config:
model: str = 'gpt-4-1106-preview'
model_endpoint: str = 'openai'
openai_key: Optional[str] = os.getenv('OPENAI_API_KEY')
openai_temperature: float = float(os.getenv("OPENAI_TEMPERATURE", 0.0))
# Embedding parameters
embedding_model: str = 'openai'

View file

@ -1,25 +1,20 @@
import sys
import os
# this is needed to import classes from other modules
script_dir = os.path.dirname(os.path.abspath(__file__))
# Get the parent directory of your script and add it to sys.path
parent_dir = os.path.dirname(script_dir)
sys.path.append(parent_dir)
# script_dir = os.path.dirname(os.path.abspath(__file__))
# # Get the parent directory of your script and add it to sys.path
# parent_dir = os.path.dirname(script_dir)
# sys.path.append(parent_dir)
from database.postgres.database import Base
from database.database import Base, engine
import models.memory
import models.metadatas
import models.operation
import models.sessions
import models.testoutput
import models.testset
import models.user
import models.docs
from sqlalchemy import create_engine, text
import psycopg2
from dotenv import load_dotenv
load_dotenv()
import os
def create_admin_engine(username, password, host, database_name):
@ -55,7 +50,15 @@ if __name__ == "__main__":
username = os.getenv('POSTGRES_USER')
password = os.getenv('POSTGRES_PASSWORD')
database_name = os.getenv('POSTGRES_DB')
host = os.getenv('POSTGRES_HOST')
environment = os.environ.get("ENVIRONMENT")
if environment == "local":
host = os.getenv('POSTGRES_HOST')
elif environment == "docker":
host = os.getenv('POSTGRES_HOST_DOCKER')
else:
host = os.getenv('POSTGRES_HOST_DOCKER')
engine = create_admin_engine(username, password, host, database_name)

View file

@ -1,13 +1,5 @@
from pydantic import BaseModel
from enum import Enum
import typer
import os
import uuid
# import marvin
# from pydantic_settings import BaseSettings
from langchain.chains import GraphCypherQAChain
from langchain.chat_models import ChatOpenAI
# from marvin import ai_classifier
# marvin.settings.openai.api_key = os.environ.get("OPENAI_API_KEY")
@ -15,54 +7,33 @@ import os
print(os.getcwd())
from ..models.sessions import (Session)
from ..models.testset import TestSet
from ..models.testoutput import TestOutput
from ..models.metadatas import MetaDatas
from ..models.operation import Operation
from ..models.docs import DocsModel
from ..models.memory import MemoryModel
from pathlib import Path
import networkx as nx
from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.graphs import Neo4jGraph
from langchain.text_splitter import TokenTextSplitter
from langchain.vectorstores import Neo4jVector
import os
from dotenv import load_dotenv
import uuid
from graphviz import Digraph
from ..database.database_crud import session_scope
from ..database.database import AsyncSessionLocal
import openai
import instructor
from openai import OpenAI
from openai import AsyncOpenAI
from abc import ABC, abstractmethod
from typing import List
# Adds response_model to ChatCompletion
# Allows the return of Pydantic model rather than raw JSON
instructor.patch()
from pydantic import BaseModel, Field
from typing import List
from ..utils import format_dict, append_uuid_to_variable_names, create_edge_variable_mapping, create_node_variable_mapping
from ...utils import format_dict, append_uuid_to_variable_names, create_edge_variable_mapping, create_node_variable_mapping
DEFAULT_PRESET = "promethai_chat"
preset_options = [DEFAULT_PRESET]
import questionary
PROMETHAI_DIR = os.path.join(os.path.expanduser("~"), ".")
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
from ..config import Config
from ...config import Config
config = Config()
config.load()
@ -70,8 +41,10 @@ config.load()
print(config.model)
print(config.openai_key)
OPENAI_API_KEY = config.openai_key
aclient = instructor.patch(OpenAI())
import logging
#Execute Cypher queries to create the user and memory components if they don't exist
#
@ -144,7 +117,7 @@ class KnowledgeGraph(BaseModel):
#
def generate_graph(input) -> KnowledgeGraph:
return openai.ChatCompletion.create(
out = aclient.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{
@ -189,6 +162,7 @@ def generate_graph(input) -> KnowledgeGraph:
],
response_model=KnowledgeGraph,
)
return out
class AbstractGraphDB(ABC):
@ -297,9 +271,9 @@ class Neo4jGraphDB(AbstractGraphDB):
return create_statements
# Update the function to generate Cypher CREATE statements for edges with unique variable names
def generate_create_statements_for_edges_with_uuid(self, edges, unique_mapping, base_node_mapping):
def generate_create_statements_for_edges_with_uuid(self, user_id, edges, unique_mapping, base_node_mapping):
create_statements = []
with_statement = f"WITH {', '.join(unique_mapping.values())}, user, semantic, episodic, buffer"
with_statement = f"WITH {', '.join(unique_mapping.values())}, {user_id}, semantic, episodic, buffer"
create_statements.append(with_statement)
for edge in edges:
@ -310,9 +284,9 @@ class Neo4jGraphDB(AbstractGraphDB):
create_statements.append(f"CREATE ({source_variable})-[:{relationship}]->({target_variable})")
return create_statements
def generate_memory_type_relationships_with_uuid_and_time_context(self, nodes, unique_mapping, base_node_mapping):
def generate_memory_type_relationships_with_uuid_and_time_context(self, user_id, nodes, unique_mapping, base_node_mapping):
create_statements = []
with_statement = f"WITH {', '.join(unique_mapping.values())}, user, semantic, episodic, buffer"
with_statement = f"WITH {', '.join(unique_mapping.values())}, {user_id}, semantic, episodic, buffer"
create_statements.append(with_statement)
# Loop through each node and create relationships based on memory_type
@ -332,9 +306,9 @@ class Neo4jGraphDB(AbstractGraphDB):
return create_statements
def generate_cypher_query_for_user_prompt_decomposition(self, user_id):
async def generate_cypher_query_for_user_prompt_decomposition(self, user_id:str, query:str):
graph: KnowledgeGraph = generate_graph("I walked in the forest yesterday and added to my list I need to buy some milk in the store")
graph: KnowledgeGraph = generate_graph(query)
graph_dic = graph.dict()
node_variable_mapping = create_node_variable_mapping(graph_dic['nodes'])
@ -343,9 +317,9 @@ class Neo4jGraphDB(AbstractGraphDB):
unique_node_variable_mapping = append_uuid_to_variable_names(node_variable_mapping)
unique_edge_variable_mapping = append_uuid_to_variable_names(edge_variable_mapping)
create_nodes_statements = self.generate_create_statements_for_nodes_with_uuid(graph_dic['nodes'], unique_node_variable_mapping, node_variable_mapping)
create_edges_statements =self.generate_create_statements_for_edges_with_uuid(graph_dic['edges'], unique_node_variable_mapping, node_variable_mapping)
create_edges_statements =self.generate_create_statements_for_edges_with_uuid(user_id, graph_dic['edges'], unique_node_variable_mapping, node_variable_mapping)
memory_type_statements_with_uuid_and_time_context = self.generate_memory_type_relationships_with_uuid_and_time_context(
memory_type_statements_with_uuid_and_time_context = self.generate_memory_type_relationships_with_uuid_and_time_context(user_id,
graph_dic['nodes'], unique_node_variable_mapping, node_variable_mapping)
# # Combine all statements
@ -401,8 +375,8 @@ class Neo4jGraphDB(AbstractGraphDB):
except Exception as e:
return f"An error occurred: {str(e)}"
def retrieve_semantic_memory(self, user_id: str):
query = """
MATCH (user:User {userId: $user_id})-[:HAS_SEMANTIC_MEMORY]->(semantic:SemanticMemory)
query = f"""
MATCH (user:User {{userId: {user_id} }})-[:HAS_SEMANTIC_MEMORY]->(semantic:SemanticMemory)
MATCH (semantic)-[:HAS_KNOWLEDGE]->(knowledge)
RETURN knowledge
"""
@ -509,12 +483,10 @@ class Neo4jGraphDB(AbstractGraphDB):
return cypher_query
def update_document_node_with_namespace(self, user_id: str, vectordb_namespace: str):
def update_document_node_with_namespace(self, user_id: str, vectordb_namespace: str, document_title: str):
# Generate the Cypher query
cypher_query = f'''
MATCH (user:User {{userId: $user_id}})-[:HAS_SEMANTIC_MEMORY]->(semantic:SemanticMemory)-[:HAS_DOCUMENT]->(document:Document)
cypher_query = '''
MATCH (user:User {userId: $user_id})-[:HAS_SEMANTIC_MEMORY]->(semantic:SemanticMemory)-[:HAS_DOCUMENT]->(document:Document {title: $document_title})
SET document.vectordbNamespace = $vectordb_namespace
RETURN document
'''
@ -522,7 +494,8 @@ class Neo4jGraphDB(AbstractGraphDB):
# Parameters for the query
parameters = {
'user_id': user_id,
'vectordb_namespace': vectordb_namespace
'vectordb_namespace': vectordb_namespace,
'document_title': document_title
}
# Execute the query with the provided parameters

View file

@ -11,10 +11,10 @@ load_dotenv()
# this is needed to import classes from other modules
script_dir = os.path.dirname(os.path.abspath(__file__))
# Get the parent directory of your script and add it to sys.path
parent_dir = os.path.dirname(script_dir)
sys.path.append(parent_dir)
# script_dir = os.path.dirname(os.path.abspath(__file__))
# # Get the parent directory of your script and add it to sys.path
# parent_dir = os.path.dirname(script_dir)
# sys.path.append(parent_dir)
# in seconds

View file

@ -1,6 +1,16 @@
from contextlib import asynccontextmanager
import logging
from .models.sessions import Session
from .models.memory import MemoryModel
from .models.user import User
from .models.operation import Operation
from .models.testset import TestSet
from .models.testoutput import TestOutput
from .models.metadatas import MetaDatas
from .models.docs import DocsModel
logger = logging.getLogger(__name__)
@ -37,4 +47,18 @@ async def update_entity(session, model, entity_id, new_value):
entity.operation_status = new_value
return "Successfully updated entity"
else:
return "Entity not found"
return "Entity not found"
async def fetch_job_id(session, user_id=None, memory_id=None, job_id=None):
try:
result = await session.execute(
session.query(Session.id)
.filter_by(user_id=user_id, id=job_id)
.order_by(Session.created_at)
.first()
)
return result.scalar_one_or_none()
except Exception as e:
logging.error(f"An error occurred: {str(e)}")
return None

View file

@ -1,11 +1,10 @@
from datetime import datetime
from sqlalchemy import Column, Integer, String, DateTime, ForeignKey
from sqlalchemy import Column, String, DateTime, ForeignKey
from sqlalchemy.orm import relationship
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ..database.database import Base
from ..database import Base
class DocsModel(Base):
__tablename__ = 'docs'

View file

@ -1,18 +1,17 @@
# memory.py
from datetime import datetime
from sqlalchemy import Column, Integer, String, DateTime, ForeignKey
from sqlalchemy import Column, String, DateTime, ForeignKey
from sqlalchemy.orm import relationship
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ..database.database import Base
from ..database import Base
class MemoryModel(Base):
__tablename__ = 'memories'
id = Column(String, primary_key=True)
user_id = Column(String, ForeignKey('users.id'), index=True)
operation_id = Column(String, ForeignKey('operations.id'), index=True)
memory_name = Column(String, nullable=True)
created_at = Column(DateTime, default=datetime.utcnow)
updated_at = Column(DateTime, onupdate=datetime.utcnow)
methods_list = Column(String , nullable=True)

View file

@ -1,13 +1,10 @@
# metadata.py
from datetime import datetime
from sqlalchemy import Column, Integer, String, DateTime, ForeignKey
from sqlalchemy import Column, String, DateTime, ForeignKey
from sqlalchemy.orm import relationship
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ..database.database import Base
from ..database import Base
class MetaDatas(Base):
__tablename__ = 'metadatas'

View file

@ -4,9 +4,7 @@ from sqlalchemy import Column, Integer, String, DateTime, ForeignKey
from sqlalchemy.orm import relationship
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ..database.database import Base
from ..database import Base
class Operation(Base):
__tablename__ = 'operations'

View file

@ -4,8 +4,8 @@ from sqlalchemy import Column, Integer, String, DateTime, ForeignKey
from sqlalchemy.orm import relationship
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ..database.database import Base
from ..database import Base
class Session(Base):

View file

@ -1,21 +1,14 @@
# test_output.py
from datetime import datetime
from sqlalchemy import Column, Integer, String, DateTime, ForeignKey
from sqlalchemy.orm import relationship
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from database.database import Base
from datetime import datetime
from sqlalchemy import Column, String, DateTime, ForeignKey, JSON
from sqlalchemy.orm import relationship
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ..database.database import Base
from ..database import Base
class TestOutput(Base):
"""

View file

@ -1,13 +1,10 @@
# test_set.py
from datetime import datetime
from sqlalchemy import Column, Integer, String, DateTime, ForeignKey
from sqlalchemy import Column, String, DateTime, ForeignKey
from sqlalchemy.orm import relationship
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ..database.database import Base
from ..database import Base
class TestSet(Base):
__tablename__ = 'test_sets'

View file

@ -1,12 +1,11 @@
# user.py
from datetime import datetime
from sqlalchemy import Column, Integer, String, DateTime, ForeignKey
from sqlalchemy import Column, String, DateTime
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ..database.database import Base
from ..database import Base
class User(Base):

View file

@ -3,23 +3,27 @@ import logging
from io import BytesIO
import os, sys
# Add the parent directory to sys.path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ..vectordb.vectordb import PineconeVectorDB, WeaviateVectorDB
# sys.path.append(os.path.dirname(os.path.abspath(__file__)))
import sqlalchemy as sa
print(os.getcwd())
logging.basicConfig(level=logging.INFO)
import marvin
# import marvin
import requests
from dotenv import load_dotenv
from langchain.document_loaders import PyPDFLoader
from langchain.retrievers import WeaviateHybridSearchRetriever
from weaviate.gql.get import HybridFusion
from ..models.sessions import Session
from ..models.testset import TestSet
from ..models.testoutput import TestOutput
from ..models.metadatas import MetaDatas
from ..models.operation import Operation
from database.postgres.models.sessions import Session
from database.postgres.models.testset import TestSet
from database.postgres.models.testoutput import TestOutput
from database.postgres.models.metadatas import MetaDatas
from database.postgres.models.operation import Operation
from database.postgres.models.docs import DocsModel
from sqlalchemy.orm import sessionmaker
from ..database.database import engine
from database.postgres.database import engine
load_dotenv()
from typing import Optional
import time
@ -29,7 +33,7 @@ tracemalloc.start()
from datetime import datetime
from langchain.embeddings.openai import OpenAIEmbeddings
from database.vectordb.vectordb import PineconeVectorDB, WeaviateVectorDB
from langchain.schema import Document
import uuid
import weaviate
@ -38,7 +42,7 @@ import json
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
marvin.settings.openai.api_key = os.environ.get("OPENAI_API_KEY")
# marvin.settings.openai.api_key = os.environ.get("OPENAI_API_KEY")
class VectorDBFactory:
def __init__(self):

View file

@ -1,7 +1,7 @@
from langchain.document_loaders import PyPDFLoader
import sys, os
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from ..shared.chunk_strategy import ChunkStrategy
from shared.chunk_strategy import ChunkStrategy
import re
def chunk_data(chunk_strategy=None, source_data=None, chunk_size=None, chunk_overlap=None):

View file

@ -2,10 +2,9 @@ from io import BytesIO
import fitz
import os
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from vectordb.chunkers.chunkers import chunk_data
from llama_hub.file.base import SimpleDirectoryReader
from database.vectordb.chunkers.chunkers import chunk_data
from langchain.document_loaders import UnstructuredURLLoader
from langchain.document_loaders import DirectoryLoader
import logging
@ -29,6 +28,7 @@ async def _document_loader( observation: str, loader_settings: dict):
if loader_settings.get("source") == "URL":
for file in list_of_docs:
if document_format == "PDF":
logging.info("File is %s", file)
pdf_response = requests.get(file)
pdf_stream = BytesIO(pdf_response.content)
with fitz.open(stream=pdf_stream, filetype='pdf') as doc:

View file

@ -4,7 +4,7 @@ import logging
from langchain.text_splitter import RecursiveCharacterTextSplitter
from marshmallow import Schema, fields
from loaders.loaders import _document_loader
from database.vectordb.loaders.loaders import _document_loader
# Add the parent directory to sys.path

View file

@ -3,15 +3,18 @@ import logging
from sqlalchemy.future import select
logging.basicConfig(level=logging.INFO)
import marvin
from dotenv import load_dotenv
from level_4.cognitive_architecture.models import User
from level_4.cognitive_architecture.models.memory import MemoryModel
load_dotenv()
import os
print(os.getcwd())
from database.postgres.models.user import User
from database.postgres.models.memory import MemoryModel
import ast
import tracemalloc
from level_4.cognitive_architecture.database.database_crud import add_entity
from database.postgres.database_crud import add_entity
tracemalloc.start()
@ -21,9 +24,16 @@ import uuid
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
marvin.settings.openai.api_key = os.environ.get("OPENAI_API_KEY")
from vectordb.basevectordb import BaseMemory
from database.vectordb.basevectordb import BaseMemory
from config import Config
config = Config()
config.load()
class DynamicBaseMemory(BaseMemory):
@ -130,11 +140,10 @@ class Memory:
user_id: str = "676",
session=None,
index_name: str = None,
knowledge_source: str = None,
knowledge_type: str = None,
db_type: str = "weaviate",
namespace: str = None,
memory_id: str = None,
memory_class = None,
) -> None:
self.load_environment_variables()
self.memory_id = memory_id
@ -142,44 +151,51 @@ class Memory:
self.session = session
self.index_name = index_name
self.db_type = db_type
self.knowledge_source = knowledge_source
self.knowledge_type = knowledge_type
self.long_term_memory = None
self.short_term_memory = None
self.namespace = namespace
self.memory_instances = []
# inspect and fix this
self.memory_class = DynamicBaseMemory(
"Memory", user_id, str(self.memory_id), index_name, db_type, namespace
)
self.memory_class = memory_class
# self.memory_class = DynamicBaseMemory(
# "Memory", user_id, str(self.memory_id), index_name, db_type, namespace
# )
def load_environment_variables(self) -> None:
load_dotenv()
self.OPENAI_TEMPERATURE = float(os.getenv("OPENAI_TEMPERATURE", 0.0))
self.OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", "")
self.OPENAI_TEMPERATURE = config.openai_temperature
self.OPENAI_API_KEY = config.openai_key
@classmethod
async def create_memory(cls, user_id: str, session, **kwargs):
async def create_memory(cls, user_id: str, session, memory_label:str, **kwargs):
"""
Class method that acts as a factory method for creating Memory instances.
It performs necessary DB checks or updates before instance creation.
"""
existing_user = await cls.check_existing_user(user_id, session)
logging.info(f"Existing user: {existing_user}")
if existing_user:
# Handle existing user scenario...
memory_id = await cls.check_existing_memory(user_id, session)
memory_id = await cls.check_existing_memory(user_id,memory_label, session)
if memory_id is None:
memory_id = await cls.handle_new_memory(user_id, session, memory_name= memory_label)
logging.info(
f"Existing user {user_id} found in the DB. Memory ID: {memory_id}"
)
else:
# Handle new user scenario...
memory_id = await cls.handle_new_user(user_id, session)
await cls.handle_new_user(user_id, session)
memory_id = await cls.handle_new_memory(user_id, session, memory_name= memory_label)
logging.info(
f"New user {user_id} created in the DB. Memory ID: {memory_id}"
)
return cls(user_id=user_id, session=session, memory_id=memory_id, **kwargs)
memory_class = DynamicBaseMemory(
memory_label, user_id, str(memory_id), index_name=memory_label, db_type='weaviate', **kwargs
)
return cls(user_id=user_id, session=session, memory_id=memory_id, memory_class=memory_class, **kwargs)
async def list_memory_classes(self):
"""
@ -195,42 +211,85 @@ class Memory:
return result.scalar_one_or_none()
@staticmethod
async def check_existing_memory(user_id: str, session):
"""Check if a user memory exists in the DB and return it."""
result = await session.execute(
select(MemoryModel.id).where(MemoryModel.user_id == user_id)
)
return result.scalar_one_or_none()
async def check_existing_memory(user_id: str, memory_label:str, session):
"""Check if a user memory exists in the DB and return it. Filters by user and label"""
try:
result = await session.execute(
select(MemoryModel.id).where(MemoryModel.user_id == user_id)
.filter_by(memory_name=memory_label)
.order_by(MemoryModel.created_at)
)
return result.scalar_one_or_none()
except Exception as e:
logging.error(f"An error occurred: {str(e)}")
return None
@staticmethod
async def handle_new_user(user_id: str, session):
"""Handle new user creation in the DB and return the new memory ID."""
"""
Handle new user creation in the database.
# handle these better in terms of retry and error handling
memory_id = str(uuid.uuid4())
new_user = User(id=user_id)
await add_entity(session, new_user)
Args:
user_id (str): The unique identifier for the new user.
session: The database session for the operation.
Returns:
str: A success message or an error message.
Raises:
Exception: If any error occurs during the user creation process.
"""
try:
new_user = User(id=user_id)
await add_entity(session, new_user)
return "User creation successful."
except Exception as e:
return f"Error creating user: {str(e)}"
@staticmethod
async def handle_new_memory(user_id: str, session, job_id: str = None, memory_name: str = None):
"""
Handle new memory creation associated with a user.
Args:
user_id (str): The user's unique identifier.
session: The database session for the operation.
job_id (str, optional): The identifier of the associated job, if any.
memory_name (str, optional): The name of the memory.
Returns:
str: The unique memory ID if successful, or an error message.
Raises:
Exception: If any error occurs during memory creation.
"""
try:
memory_id = str(uuid.uuid4())
memory = MemoryModel(
id=memory_id,
user_id=user_id,
operation_id=job_id,
memory_name=memory_name,
methods_list=str(["Memory", "SemanticMemory", "EpisodicMemory"]),
attributes_list=str(
[
"user_id",
"index_name",
"db_type",
"knowledge_source",
"knowledge_type",
"memory_id",
"long_term_memory",
"short_term_memory",
"namespace",
]
),
)
await add_entity(session, memory)
return memory_id
except Exception as e:
return f"Error creating memory: {str(e)}"
memory = MemoryModel(
id=memory_id,
user_id=user_id,
methods_list=str(["Memory", "SemanticMemory", "EpisodicMemory"]),
attributes_list=str(
[
"user_id",
"index_name",
"db_type",
"knowledge_source",
"knowledge_type",
"memory_id",
"long_term_memory",
"short_term_memory",
"namespace",
]
),
)
await add_entity(session, memory)
return memory_id
async def add_memory_instance(self, memory_class_name: str):
"""Add a new memory instance to the memory_instances list."""
@ -372,22 +431,24 @@ async def main():
loader_settings = {
"format": "PDF",
"source": "URL",
"path": "https://www.ibiblio.org/ebooks/London/Call%20of%20Wild.pdf",
"path": ["https://www.ibiblio.org/ebooks/London/Call%20of%20Wild.pdf"],
}
# memory_instance = Memory(namespace='SEMANTICMEMORY')
# sss = await memory_instance.dynamic_method_call(memory_instance.semantic_memory_class, 'fetch_memories', observation='some_observation')
from level_4.cognitive_architecture.database.database_crud import session_scope
from level_4.cognitive_architecture.database.database import AsyncSessionLocal
from database.postgres.database_crud import session_scope
from database.postgres.database import AsyncSessionLocal
async with session_scope(AsyncSessionLocal()) as session:
memory = await Memory.create_memory("676", session, namespace="SEMANTICMEMORY")
memory = await Memory.create_memory("677", session, "SEMANTICMEMORY", namespace="SEMANTICMEMORY")
ff = memory.memory_instances
logging.info("ssss %s", ff)
# Adding a memory instance
await memory.add_memory_instance("ExampleMemory")
# await memory.add_memory_instance("ExampleMemory")
# Managing memory attributes
existing_user = await Memory.check_existing_user("676", session)
existing_user = await Memory.check_existing_user("677", session)
print("here is the existing user", existing_user)
await memory.manage_memory_attributes(existing_user)
# aeehuvyq_semanticememory_class
@ -401,7 +462,7 @@ async def main():
susu = await memory.dynamic_method_call(
memory.semanticmemory_class,
"fetch_memories",
observation="some_observation",
observation="document summary",
)
print(susu)

View file

@ -13,29 +13,29 @@ services:
networks:
- promethai_mem_backend
# promethai_mem:
# networks:
# - promethai_mem_backend
# build:
# context: ./
# volumes:
# - "./:/app"
# - ./.data:/app/.data
#
# environment:
# - HOST=0.0.0.0
# profiles: ["exclude-from-up"]
# ports:
# - 8000:8000
# - 443:443
# - 80:80
# depends_on:
# - postgres
# deploy:
# resources:
# limits:
# cpus: "4.0"
# memory: 8GB
promethai_mem:
networks:
- promethai_mem_backend
build:
context: ./
volumes:
- "./:/app"
- ./.data:/app/.data
environment:
- HOST=0.0.0.0
profiles: ["exclude-from-up"]
ports:
- 8000:8000
- 443:443
- 80:80
depends_on:
- postgres
deploy:
resources:
limits:
cpus: "4.0"
memory: 8GB
postgres:

View file

@ -1,50 +1,22 @@
from enum import Enum
import typer
import os
import uuid
# import marvin
# from pydantic_settings import BaseSettings
from langchain.chains import GraphCypherQAChain
from langchain.chat_models import ChatOpenAI
# from marvin import ai_classifier
# marvin.settings.openai.api_key = os.environ.get("OPENAI_API_KEY")
from cognitive_architecture.database.graph_database.graph import Neo4jGraphDB
from cognitive_architecture.database.postgres.models.memory import MemoryModel
from cognitive_architecture.models.sessions import Session
from cognitive_architecture.models.testset import TestSet
from cognitive_architecture.models.testoutput import TestOutput
from cognitive_architecture.models.metadatas import MetaDatas
from cognitive_architecture.models.operation import Operation
from cognitive_architecture.models.docs import DocsModel
from cognitive_architecture.models.memory import MemoryModel
from pathlib import Path
from langchain.document_loaders import TextLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.graphs import Neo4jGraph
from langchain.text_splitter import TokenTextSplitter
from langchain.vectorstores import Neo4jVector
import os
from dotenv import load_dotenv
import uuid
from graphviz import Digraph
from level_4.cognitive_architecture.database.postgres.database_crud import session_scope
from cognitive_architecture.database.postgres.database import AsyncSessionLocal
from cognitive_architecture.database.database_crud import session_scope
from cognitive_architecture.database.database import AsyncSessionLocal
import openai
import instructor
from openai import OpenAI
# Adds response_model to ChatCompletion
# Allows the return of Pydantic model rather than raw JSON
instructor.patch()
from pydantic import BaseModel, Field
from typing import List
instructor.patch(OpenAI())
DEFAULT_PRESET = "promethai_chat"
preset_options = [DEFAULT_PRESET]
import questionary
PROMETHAI_DIR = os.path.join(os.path.expanduser("~"), ".")
load_dotenv()
@ -60,24 +32,15 @@ print(config.openai_key)
import logging
import asyncio
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy.future import select
async def get_vectordb_namespace(session: AsyncSession, user_id: str):
try:
result = await session.execute(
select(MemoryModel.id).where(MemoryModel.user_id == user_id).order_by(MemoryModel.created_at.desc()).limit(1)
select(MemoryModel.memory_name).where(MemoryModel.user_id == user_id).order_by(MemoryModel.created_at.desc())
)
namespace = result.scalar_one_or_none()
namespace = [row[0] for row in result.fetchall()]
return namespace
except Exception as e:
logging.error(f"An error occurred while retrieving the Vectordb_namespace: {str(e)}")
@ -119,10 +82,14 @@ async def update_document_vectordb_namespace(postgres_session: AsyncSession, use
if not vectordb_namespace:
logging.error("Vectordb_namespace could not be retrieved.")
return None
# Update the Document node in Neo4j with the namespace
update_result = update_document_node_with_namespace(user_id, vectordb_namespace)
return update_result
from cognitive_architecture.database.graph_database.graph import Neo4jGraphDB
# Example initialization (replace with your actual connection details)
neo4j_graph_db = Neo4jGraphDB(url='bolt://localhost:7687', username='neo4j', password='pleaseletmein')
results = []
for namespace in vectordb_namespace:
update_result = neo4j_graph_db.update_document_node_with_namespace(user_id, namespace)
results.append(update_result)
return results
@ -185,45 +152,134 @@ async def update_document_vectordb_namespace(postgres_session: AsyncSession, use
# }
#
# execute_cypher_query(rs, parameters)
#
# async def main():
# user_id = "User1"
#
# async with session_scope(AsyncSessionLocal()) as session:
# await update_document_vectordb_namespace(session, user_id)
#
# # print(rs)
#
# if __name__ == "__main__":
# import asyncio
#
# asyncio.run(main())
#
# # config = Config()
# # config.load()
# #
# # print(config.model)
# # print(config.openai_key)
from cognitive_architecture.database.postgres.database_crud import fetch_job_id
import uuid
from cognitive_architecture.database.postgres.models.sessions import Session
from cognitive_architecture.database.postgres.models.operation import Operation
from cognitive_architecture.database.postgres.database_crud import session_scope, add_entity, update_entity, fetch_job_id
from cognitive_architecture.database.postgres.models.metadatas import MetaDatas
from cognitive_architecture.database.postgres.models.testset import TestSet
from cognitive_architecture.database.postgres.models.testoutput import TestOutput
from cognitive_architecture.database.postgres.models.docs import DocsModel
from cognitive_architecture.database.postgres.models.memory import MemoryModel
async def main():
user_id = "User1"
from cognitive_architecture.graph_database.graph import Neo4jGraphDB
# Example initialization (replace with your actual connection details)
neo4j_graph_db = Neo4jGraphDB(url='bolt://localhost:7687', username='neo4j', password='pleaseletmein')
# Generate the Cypher query for a specific user
user_id = 'user123' # Replace with the actual user ID
cypher_query = neo4j_graph_db.generate_cypher_query_for_user_prompt_decomposition(user_id)
# Execute the generated Cypher query
result = neo4j_graph_db.query(cypher_query)
user_id = "user"
# async with session_scope(AsyncSessionLocal()) as session:
# await update_document_vectordb_namespace(session, user_id)
async with session_scope(AsyncSessionLocal()) as session:
# out = await get_vectordb_namespace(session, user_id)
# print(out)
# job_id = ""
# job_id = await fetch_job_id(session, user_id=user_id, job_id=job_id)
# if job_id is None:
# job_id = str(uuid.uuid4())
#
# await add_entity(
# session,
# Operation(
# id=job_id,
# user_id=user_id,
# operation_params="",
# number_of_files=2,
# operation_status = "RUNNING",
# operation_type="",
# test_set_id="",
# ),
# )
# await update_document_vectordb_namespace(session, user_id)
# from cognitive_architecture.graph_database.graph import Neo4jGraphDB
# # Example initialization (replace with your actual connection details)
neo4j_graph_db = Neo4jGraphDB(url='bolt://localhost:7687', username='neo4j', password='pleaseletmein')
# # Generate the Cypher query for a specific user
# user_id = 'user123' # Replace with the actual user ID
cypher_query = await neo4j_graph_db.generate_cypher_query_for_user_prompt_decomposition(user_id,"I walked in the forest yesterday and added to my list I need to buy some milk in the store")
# result = neo4j_graph_db.query(cypher_query)
call_of_the_wild_summary = {
"user_id": user_id,
"document_category": "Classic Literature",
"title": "The Call of the Wild",
"summary": (
"'The Call of the Wild' is a novel by Jack London set in the Yukon during the 1890s Klondike "
"Gold Rush—a period when strong sled dogs were in high demand. The novel's central character "
"is a dog named Buck, a domesticated dog living at a ranch in the Santa Clara Valley of California "
"as the story opens. Stolen from his home and sold into the brutal existence of an Alaskan sled dog, "
"he reverts to atavistic traits. Buck is forced to adjust to, and survive, cruel treatments and fight "
"to dominate other dogs in a harsh climate. Eventually, he sheds the veneer of civilization, relying "
"on primordial instincts and lessons he learns, to emerge as a leader in the wild. London drew on his "
"own experiences in the Klondike, and the book provides a snapshot of the epical gold rush and the "
"harsh realities of life in the wilderness. The novel explores themes of morality versus instinct, "
"the struggle for survival in the natural world, and the intrusion of civilization on the wilderness. "
"As Buck's wild nature is awakened, he rises to become a respected and feared leader in the wild, "
"answering the primal call of nature."
)
}
rs = neo4j_graph_db.create_document_node_cypher(call_of_the_wild_summary, user_id)
neo4j_graph_db.query(rs, call_of_the_wild_summary)
print(cypher_query)
neo4j_graph_db.update_document_node_with_namespace(user_id, document_title="The Call of the Wild")
# await update_document_vectordb_namespace(session, user_id)
# # Execute the generated Cypher query
# result = neo4j_graph_db.query(cypher_query)
params = {
"version": "1.0",
"agreement_id": "AG123456",
"privacy_policy": "https://example.com/privacy",
"terms_of_service": "https://example.com/terms",
"format": "json",
"schema_version": "1.1",
"checksum": "a1b2c3d4e5f6",
"owner": "John Doe",
"license": "MIT",
"validity_start": "2023-08-01",
"validity_end": "2024-07-31",
}
loader_settings = {
"format": "PDF",
"source": "URL",
"path": "https://www.ibiblio.org/ebooks/London/Call%20of%20Wild.pdf",
}
# memory_instance = Memory(namespace='SEMANTICMEMORY')
# sss = await memory_instance.dynamic_method_call(memory_instance.semantic_memory_class, 'fetch_memories', observation='some_observation')
# from cognitive_architecture.vectorstore_manager import Memory
#
#
# memory = await Memory.create_memory("676", session, namespace="SEMANTICMEMORY")
#
# # Adding a memory instance
# await memory.add_memory_instance("ExampleMemory")
#
# # Managing memory attributes
# existing_user = await Memory.check_existing_user("676", session)
# print("here is the existing user", existing_user)
# await memory.manage_memory_attributes(existing_user)
# # aeehuvyq_semanticememory_class
#
# await memory.add_dynamic_memory_class("semanticmemory", "SEMANTICMEMORY")
# await memory.add_method_to_class(memory.semanticmemory_class, "add_memories")
# # await memory.add_method_to_class(memory.semanticmemory_class, "fetch_memories")
# sss = await memory.dynamic_method_call(memory.semanticmemory_class, 'add_memories',
# observation='some_observation', params=params, loader_settings=loader_settings)
# print(rs)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
asyncio.run(main())

6127
level_4/poetry.lock generated Normal file

File diff suppressed because it is too large Load diff

52
level_4/pyproject.toml Normal file
View file

@ -0,0 +1,52 @@
[tool.poetry]
name = "PromethAI_memory"
version = "0.1.0"
description = "PromethAI memory manager"
authors = ["Vasilije Markovic"]
readme = "README.md"
[tool.poetry.dependencies]
python = "^3.10"
langchain = "v0.0.308"
nltk = "3.8.1"
openai = "0.27.8"
pinecone-client = "2.2.2"
python-dotenv = "1.0.0"
pyyaml = "6.0"
fastapi = "^0.98.0"
uvicorn = "0.22.0"
pexpect = "^4.8.0"
boto3 = "^1.26.125"
gptcache = "^0.1.22"
gunicorn = "^20.1.0"
tiktoken = "^0.4.0"
spacy = "^3.5.3"
python-jose = "^3.3.0"
pypdf = "^3.12.0"
fastjsonschema = "^2.18.0"
marvin = "^1.3.0"
dlt = { version ="^0.3.8", extras = ["duckdb"]}
weaviate-client = "^3.22.1"
python-multipart = "^0.0.6"
deepeval = "^0.20.12"
pymupdf = "^1.23.3"
psycopg2 = "^2.9.8"
llama-index = "^0.8.39.post2"
llama-hub = "^0.0.34"
sqlalchemy = "^2.0.21"
asyncpg = "^0.28.0"
dash = "^2.14.0"
unstructured = {extras = ["pdf"], version = "^0.10.23"}
sentence-transformers = "2.2.2"
torch = "2.0.*"
segment-analytics-python = "^2.2.3"
pdf2image = "^1.16.3"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"