cognee/evals/eval_on_hotpot.py
alekszievr 3494521cae
Support 4 different rag options in eval (#439)
* QA eval dataset as argument, with hotpot and 2wikimultihop as options. Json schema validation for datasets.

* Load dataset file by filename, outsource utilities

* restructure metric selection

* Add comprehensiveness, diversity and empowerment metrics

* add promptfoo as an option

* refactor RAG solution in eval;2C

* LLM as a judge metrics implemented in a uniform way

* Use requests.get instead of wget

* clean up promptfoo config template

* minor fixes

* get promptfoo path instead of hardcoding

* minor fixes

* Add LLM as a judge prompts

* Support 4 different rag options in eval

* Minor refactor and logger usage
2025-01-15 15:34:13 +01:00

99 lines
3.2 KiB
Python

import argparse
import asyncio
import statistics
from deepeval.dataset import EvaluationDataset
from deepeval.test_case import LLMTestCase
from tqdm import tqdm
import logging
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt, render_prompt
from evals.qa_dataset_utils import load_qa_dataset
from evals.qa_metrics_utils import get_metric
from evals.qa_context_provider_utils import qa_context_providers
logger = logging.getLogger(__name__)
async def answer_qa_instance(instance, context_provider):
context = await context_provider(instance)
args = {
"question": instance["question"],
"context": context,
}
user_prompt = render_prompt("context_for_question.txt", args)
system_prompt = read_query_prompt("answer_hotpot_using_cognee_search.txt")
llm_client = get_llm_client()
answer_prediction = await llm_client.acreate_structured_output(
text_input=user_prompt,
system_prompt=system_prompt,
response_model=str,
)
return answer_prediction
async def deepeval_answers(instances, answers, eval_metric):
test_cases = []
for instance, answer in zip(instances, answers):
test_case = LLMTestCase(
input=instance["question"], actual_output=answer, expected_output=instance["answer"]
)
test_cases.append(test_case)
eval_set = EvaluationDataset(test_cases)
eval_results = eval_set.evaluate([eval_metric])
return eval_results
async def deepeval_on_instances(instances, context_provider, eval_metric):
answers = []
for instance in tqdm(instances, desc="Getting answers"):
answer = await answer_qa_instance(instance, context_provider)
answers.append(answer)
eval_results = await deepeval_answers(instances, answers, eval_metric)
avg_score = statistics.mean(
[result.metrics_data[0].score for result in eval_results.test_results]
)
return avg_score
async def eval_on_QA_dataset(
dataset_name_or_filename: str, context_provider_name, num_samples, eval_metric_name
):
dataset = load_qa_dataset(dataset_name_or_filename)
context_provider = qa_context_providers[context_provider_name]
eval_metric = get_metric(eval_metric_name)
instances = dataset if not num_samples else dataset[:num_samples]
if eval_metric_name.startswith("promptfoo"):
return await eval_metric.measure(instances, context_provider)
else:
return await deepeval_on_instances(instances, context_provider, eval_metric)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True, help="Which dataset to evaluate on")
parser.add_argument(
"--rag_option",
type=str,
choices=qa_context_providers.keys(),
required=True,
help="RAG option to use for providing context",
)
parser.add_argument("--num_samples", type=int, default=500)
parser.add_argument("--metric_name", type=str, default="Correctness")
args = parser.parse_args()
avg_score = asyncio.run(
eval_on_QA_dataset(args.dataset, args.rag_option, args.num_samples, args.metric_name)
)
logger.info(f"Average {args.metric_name}: {avg_score}")