Support 4 different rag options in eval (#439)

* QA eval dataset as argument, with hotpot and 2wikimultihop as options. Json schema validation for datasets.

* Load dataset file by filename, outsource utilities

* restructure metric selection

* Add comprehensiveness, diversity and empowerment metrics

* add promptfoo as an option

* refactor RAG solution in eval;2C

* LLM as a judge metrics implemented in a uniform way

* Use requests.get instead of wget

* clean up promptfoo config template

* minor fixes

* get promptfoo path instead of hardcoding

* minor fixes

* Add LLM as a judge prompts

* Support 4 different rag options in eval

* Minor refactor and logger usage
This commit is contained in:
alekszievr 2025-01-15 15:34:13 +01:00 committed by GitHub
parent 6653d73556
commit 3494521cae
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 70 additions and 34 deletions

View file

@ -5,39 +5,15 @@ from deepeval.dataset import EvaluationDataset
from deepeval.test_case import LLMTestCase
from tqdm import tqdm
import logging
import cognee
from cognee.api.v1.search import SearchType
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt, render_prompt
from evals.qa_dataset_utils import load_qa_dataset
from evals.qa_metrics_utils import get_metric
from evals.qa_context_provider_utils import qa_context_providers
logger = logging.getLogger(__name__)
async def get_context_with_cognee(instance):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
for title, sentences in instance["context"]:
await cognee.add("\n".join(sentences), dataset_name="QA")
await cognee.cognify("QA")
search_results = await cognee.search(SearchType.INSIGHTS, query_text=instance["question"])
search_results_second = await cognee.search(
SearchType.SUMMARIES, query_text=instance["question"]
)
search_results = search_results + search_results_second
search_results_str = "\n".join([context_item["text"] for context_item in search_results])
return search_results_str
async def get_context_without_cognee(instance):
return instance["context"]
async def answer_qa_instance(instance, context_provider):
context = await context_provider(instance)
@ -88,10 +64,10 @@ async def deepeval_on_instances(instances, context_provider, eval_metric):
async def eval_on_QA_dataset(
dataset_name_or_filename: str, context_provider, num_samples, eval_metric_name
dataset_name_or_filename: str, context_provider_name, num_samples, eval_metric_name
):
dataset = load_qa_dataset(dataset_name_or_filename)
context_provider = qa_context_providers[context_provider_name]
eval_metric = get_metric(eval_metric_name)
instances = dataset if not num_samples else dataset[:num_samples]
@ -105,18 +81,19 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True, help="Which dataset to evaluate on")
parser.add_argument("--with_cognee", action="store_true")
parser.add_argument(
"--rag_option",
type=str,
choices=qa_context_providers.keys(),
required=True,
help="RAG option to use for providing context",
)
parser.add_argument("--num_samples", type=int, default=500)
parser.add_argument("--metric_name", type=str, default="Correctness")
args = parser.parse_args()
if args.with_cognee:
context_provider = get_context_with_cognee
else:
context_provider = get_context_without_cognee
avg_score = asyncio.run(
eval_on_QA_dataset(args.dataset, context_provider, args.num_samples, args.metric_name)
eval_on_QA_dataset(args.dataset, args.rag_option, args.num_samples, args.metric_name)
)
logger.info(f"Average {args.metric_name}: {avg_score}")

View file

@ -0,0 +1,59 @@
import cognee
from cognee.api.v1.search import SearchType
from cognee.infrastructure.databases.vector import get_vector_engine
from cognee.modules.retrieval.brute_force_triplet_search import brute_force_triplet_search
from cognee.tasks.completion.graph_query_completion import retrieved_edges_to_string
async def get_raw_context(instance: dict) -> str:
return instance["context"]
async def cognify_instance(instance: dict):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
for title, sentences in instance["context"]:
await cognee.add("\n".join(sentences), dataset_name="QA")
await cognee.cognify("QA")
async def get_context_with_cognee(instance: dict) -> str:
await cognify_instance(instance)
insights = await cognee.search(SearchType.INSIGHTS, query_text=instance["question"])
summaries = await cognee.search(SearchType.SUMMARIES, query_text=instance["question"])
search_results = insights + summaries
search_results_str = "\n".join([context_item["text"] for context_item in search_results])
return search_results_str
async def get_context_with_simple_rag(instance: dict) -> str:
await cognify_instance(instance)
vector_engine = get_vector_engine()
found_chunks = await vector_engine.search("document_chunk_text", instance["question"], limit=5)
search_results_str = "\n".join([context_item.payload["text"] for context_item in found_chunks])
return search_results_str
async def get_context_with_brute_force_triplet_search(instance: dict) -> str:
await cognify_instance(instance)
found_triplets = await brute_force_triplet_search(instance["question"], top_k=5)
search_results_str = retrieved_edges_to_string(found_triplets)
return search_results_str
qa_context_providers = {
"no_rag": get_raw_context,
"cognee": get_context_with_cognee,
"simple_rag": get_context_with_simple_rag,
"brute_force": get_context_with_brute_force_triplet_search,
}