cognee/cognee-mcp/README.md

472 lines
15 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<div align="center">
<a href="https://github.com/topoteretes/cognee">
<img src="https://raw.githubusercontent.com/topoteretes/cognee/refs/heads/dev/assets/cognee-logo-transparent.png" alt="Cognee Logo" height="60">
</a>
<br />
cogneemcp - Run cognees memory engine as a Model Context Protocol server
<p align="center">
<a href="https://www.youtube.com/watch?v=1bezuvLwJmw&t=2s">Demo</a>
.
<a href="https://cognee.ai">Learn more</a>
·
<a href="https://discord.gg/NQPKmU5CCg">Join Discord</a>
·
<a href="https://www.reddit.com/r/AIMemory/">Join r/AIMemory</a>
</p>
[![GitHub forks](https://img.shields.io/github/forks/topoteretes/cognee.svg?style=social&label=Fork&maxAge=2592000)](https://GitHub.com/topoteretes/cognee/network/)
[![GitHub stars](https://img.shields.io/github/stars/topoteretes/cognee.svg?style=social&label=Star&maxAge=2592000)](https://GitHub.com/topoteretes/cognee/stargazers/)
[![GitHub commits](https://badgen.net/github/commits/topoteretes/cognee)](https://GitHub.com/topoteretes/cognee/commit/)
[![Github tag](https://badgen.net/github/tag/topoteretes/cognee)](https://github.com/topoteretes/cognee/tags/)
[![Downloads](https://static.pepy.tech/badge/cognee)](https://pepy.tech/project/cognee)
[![License](https://img.shields.io/github/license/topoteretes/cognee?colorA=00C586&colorB=000000)](https://github.com/topoteretes/cognee/blob/main/LICENSE)
[![Contributors](https://img.shields.io/github/contributors/topoteretes/cognee?colorA=00C586&colorB=000000)](https://github.com/topoteretes/cognee/graphs/contributors)
<a href="https://www.producthunt.com/posts/cognee?embed=true&utm_source=badge-top-post-badge&utm_medium=badge&utm_souce=badge-cognee" target="_blank"><img src="https://api.producthunt.com/widgets/embed-image/v1/top-post-badge.svg?post_id=946346&theme=light&period=daily&t=1744472480704" alt="cognee - Memory&#0032;for&#0032;AI&#0032;Agents&#0032;&#0032;in&#0032;5&#0032;lines&#0032;of&#0032;code | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" /></a>
<a href="https://trendshift.io/repositories/13955" target="_blank"><img src="https://trendshift.io/api/badge/repositories/13955" alt="topoteretes%2Fcognee | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
Build memory for Agents and query from any client that speaks MCP  in your terminal or IDE.
</div>
## ✨ Features
- Multiple transports choose Streamable HTTP --transport http (recommended for web deployments), SSE --transport sse (realtime streaming), or stdio (classic pipe, default)
- **API Mode** connect to an already running Cognee FastAPI server instead of using cognee directly (see [API Mode](#-api-mode) below)
- Integrated logging all actions written to a rotating file (see get_log_file_location()) and mirrored to console in dev
- Local file ingestion feed .md, source files, Cursor rulesets, etc. straight from disk
- Background pipelines longrunning cognify & codify jobs spawn offthread; check progress with status tools
- Developer rules bootstrap one call indexes .cursorrules, .cursor/rules, AGENT.md, and friends into the developer_rules nodeset
- Prune & reset wipe memory clean with a single prune call when you want to start fresh
Please refer to our documentation [here](https://docs.cognee.ai/how-to-guides/deployment/mcp) for further information.
## 🚀 Quick Start
1. Clone cognee repo
```
git clone https://github.com/topoteretes/cognee.git
```
2. Navigate to cognee-mcp subdirectory
```
cd cognee/cognee-mcp
```
3. Install uv if you don't have one
```
pip install uv
```
4. Install all the dependencies you need for cognee mcp server with uv
```
uv sync --dev --all-extras --reinstall
```
5. Activate the virtual environment in cognee mcp directory
```
source .venv/bin/activate
```
6. Set up your OpenAI API key in .env for a quick setup with the default cognee configurations
```
LLM_API_KEY="YOUR_OPENAI_API_KEY"
```
7. Run cognee mcp server with stdio (default)
```
python src/server.py
```
or stream responses over SSE
```
python src/server.py --transport sse
```
or run with Streamable HTTP transport (recommended for web deployments)
```
python src/server.py --transport http --host 127.0.0.1 --port 8000 --path /mcp
```
You can do more advanced configurations by creating .env file using our <a href="https://github.com/topoteretes/cognee/blob/main/.env.template">template.</a>
To use different LLM providers / database configurations, and for more info check out our <a href="https://docs.cognee.ai">documentation</a>.
## 🐳 Docker Usage
If you'd rather run cognee-mcp in a container, you have two options:
1. **Build locally**
1. Make sure you are in /cognee root directory and have a fresh `.env` containing only your `LLM_API_KEY` (and your chosen settings).
2. Remove any old image and rebuild:
```bash
docker rmi cognee/cognee-mcp:main || true
docker build --no-cache -f cognee-mcp/Dockerfile -t cognee/cognee-mcp:main .
```
3. Run it:
```bash
# For HTTP transport (recommended for web deployments)
docker run -e TRANSPORT_MODE=http --env-file ./.env -p 8000:8000 --rm -it cognee/cognee-mcp:main
# For SSE transport
docker run -e TRANSPORT_MODE=sse --env-file ./.env -p 8000:8000 --rm -it cognee/cognee-mcp:main
# For stdio transport (default)
docker run -e TRANSPORT_MODE=stdio --env-file ./.env --rm -it cognee/cognee-mcp:main
```
2. **Pull from Docker Hub** (no build required):
```bash
# With HTTP transport (recommended for web deployments)
docker run -e TRANSPORT_MODE=http --env-file ./.env -p 8000:8000 --rm -it cognee/cognee-mcp:main
# With SSE transport
docker run -e TRANSPORT_MODE=sse --env-file ./.env -p 8000:8000 --rm -it cognee/cognee-mcp:main
# With stdio transport (default)
docker run -e TRANSPORT_MODE=stdio --env-file ./.env --rm -it cognee/cognee-mcp:main
```
### **Important: Docker vs Direct Usage**
**Docker uses environment variables**, not command line arguments:
- ✅ Docker: `-e TRANSPORT_MODE=http`
- ❌ Docker: `--transport http` (won't work)
**Direct Python usage** uses command line arguments:
- ✅ Direct: `python src/server.py --transport http`
- ❌ Direct: `-e TRANSPORT_MODE=http` (won't work)
### **Docker API Mode**
To connect the MCP Docker container to a Cognee API server running on your host machine:
#### **Simple Usage (Automatic localhost handling):**
```bash
# Start your Cognee API server on the host
python -m cognee.api.client
# Run MCP container in API mode - localhost is automatically converted!
docker run \
-e TRANSPORT_MODE=sse \
-e API_URL=http://localhost:8000 \
-e API_TOKEN=your_auth_token \
-p 8001:8000 \
--rm -it cognee/cognee-mcp:main
```
**Note:** The container will automatically convert `localhost` to `host.docker.internal` on Mac/Windows/Docker Desktop. You'll see a message in the logs showing the conversion.
#### **Explicit host.docker.internal (Mac/Windows):**
```bash
# Or explicitly use host.docker.internal
docker run \
-e TRANSPORT_MODE=sse \
-e API_URL=http://host.docker.internal:8000 \
-e API_TOKEN=your_auth_token \
-p 8001:8000 \
--rm -it cognee/cognee-mcp:main
```
#### **On Linux (use host network or container IP):**
```bash
# Option 1: Use host network (simplest)
docker run \
--network host \
-e TRANSPORT_MODE=sse \
-e API_URL=http://localhost:8000 \
-e API_TOKEN=your_auth_token \
--rm -it cognee/cognee-mcp:main
# Option 2: Use host IP address
# First, get your host IP: ip addr show docker0
docker run \
-e TRANSPORT_MODE=sse \
-e API_URL=http://172.17.0.1:8000 \
-e API_TOKEN=your_auth_token \
-p 8001:8000 \
--rm -it cognee/cognee-mcp:main
```
**Environment variables for API mode:**
- `API_URL`: URL of the running Cognee API server
- `API_TOKEN`: Authentication token (optional, required if API has authentication enabled)
**Note:** When running in API mode:
- Database migrations are automatically skipped (API server handles its own DB)
- Some features are limited (see [API Mode Limitations](#-api-mode))
## 🔗 MCP Client Configuration
After starting your Cognee MCP server with Docker, you need to configure your MCP client to connect to it.
### **SSE Transport Configuration** (Recommended)
**Start the server with SSE transport:**
```bash
docker run -e TRANSPORT_MODE=sse --env-file ./.env -p 8000:8000 --rm -it cognee/cognee-mcp:main
```
**Configure your MCP client:**
#### **Claude CLI (Easiest)**
```bash
claude mcp add cognee-sse -t sse http://localhost:8000/sse
```
**Verify the connection:**
```bash
claude mcp list
```
You should see your server connected:
```
Checking MCP server health...
cognee-sse: http://localhost:8000/sse (SSE) - ✓ Connected
```
#### **Manual Configuration**
**Claude (`~/.claude.json`)**
```json
{
"mcpServers": {
"cognee": {
"type": "sse",
"url": "http://localhost:8000/sse"
}
}
}
```
**Cursor (`~/.cursor/mcp.json`)**
```json
{
"mcpServers": {
"cognee-sse": {
"url": "http://localhost:8000/sse"
}
}
}
```
### **HTTP Transport Configuration** (Alternative)
**Start the server with HTTP transport:**
```bash
docker run -e TRANSPORT_MODE=http --env-file ./.env -p 8000:8000 --rm -it cognee/cognee-mcp:main
```
**Configure your MCP client:**
#### **Claude CLI (Easiest)**
```bash
claude mcp add cognee-http -t http http://localhost:8000/mcp
```
**Verify the connection:**
```bash
claude mcp list
```
You should see your server connected:
```
Checking MCP server health...
cognee-http: http://localhost:8000/mcp (HTTP) - ✓ Connected
```
#### **Manual Configuration**
**Claude (`~/.claude.json`)**
```json
{
"mcpServers": {
"cognee": {
"type": "http",
"url": "http://localhost:8000/mcp"
}
}
}
```
**Cursor (`~/.cursor/mcp.json`)**
```json
{
"mcpServers": {
"cognee-http": {
"url": "http://localhost:8000/mcp"
}
}
}
```
### **Dual Configuration Example**
You can configure both transports simultaneously for testing:
```json
{
"mcpServers": {
"cognee-sse": {
"type": "sse",
"url": "http://localhost:8000/sse"
},
"cognee-http": {
"type": "http",
"url": "http://localhost:8000/mcp"
}
}
}
```
**Note:** Only enable the server you're actually running to avoid connection errors.
## 🌐 API Mode
The MCP server can operate in two modes:
### **Direct Mode** (Default)
The MCP server directly imports and uses the cognee library. This is the default mode with full feature support.
### **API Mode**
The MCP server connects to an already running Cognee FastAPI server via HTTP requests. This is useful when:
- You have a centralized Cognee API server running
- You want to separate the MCP server from the knowledge graph backend
- You need multiple MCP servers to share the same knowledge graph
**Starting the MCP server in API mode:**
```bash
# Start your Cognee FastAPI server first (default port 8000)
cd /path/to/cognee
python -m cognee.api.client
# Then start the MCP server in API mode
cd cognee-mcp
python src/server.py --api-url http://localhost:8000 --api-token YOUR_AUTH_TOKEN
```
**API Mode with different transports:**
```bash
# With SSE transport
python src/server.py --transport sse --api-url http://localhost:8000 --api-token YOUR_TOKEN
# With HTTP transport
python src/server.py --transport http --api-url http://localhost:8000 --api-token YOUR_TOKEN
```
**API Mode with Docker:**
```bash
# On Mac/Windows (use host.docker.internal to access host)
docker run \
-e TRANSPORT_MODE=sse \
-e API_URL=http://host.docker.internal:8000 \
-e API_TOKEN=YOUR_TOKEN \
-p 8001:8000 \
--rm -it cognee/cognee-mcp:main
# On Linux (use host network)
docker run \
--network host \
-e TRANSPORT_MODE=sse \
-e API_URL=http://localhost:8000 \
-e API_TOKEN=YOUR_TOKEN \
--rm -it cognee/cognee-mcp:main
```
**Command-line arguments for API mode:**
- `--api-url`: Base URL of the running Cognee FastAPI server (e.g., `http://localhost:8000`)
- `--api-token`: Authentication token for the API (optional, required if API has authentication enabled)
**Docker environment variables for API mode:**
- `API_URL`: Base URL of the running Cognee FastAPI server
- `API_TOKEN`: Authentication token (optional, required if API has authentication enabled)
**API Mode limitations:**
Some features are only available in direct mode:
- `codify` (code graph pipeline)
- `cognify_status` / `codify_status` (pipeline status tracking)
- `prune` (data reset)
- `get_developer_rules` (developer rules retrieval)
- `list_data` with specific dataset_id (detailed data listing)
Basic operations like `cognify`, `search`, `delete`, and `list_data` (all datasets) work in both modes.
## 💻 Basic Usage
The MCP server exposes its functionality through tools. Call them from any MCP client (Cursor, Claude Desktop, Cline, Roo and more).
### Available Tools
- **cognify**: Turns your data into a structured knowledge graph and stores it in memory
- **codify**: Analyse a code repository, build a code graph, stores it in memory
- **search**: Query memory supports GRAPH_COMPLETION, RAG_COMPLETION, CODE, CHUNKS, INSIGHTS
- **list_data**: List all datasets and their data items with IDs for deletion operations
- **delete**: Delete specific data from a dataset (supports soft/hard deletion modes)
- **prune**: Reset cognee for a fresh start (removes all data)
- **cognify_status / codify_status**: Track pipeline progress
**Data Management Examples:**
```bash
# List all available datasets and data items
list_data()
# List data items in a specific dataset
list_data(dataset_id="your-dataset-id-here")
# Delete specific data (soft deletion - safer, preserves shared entities)
delete(data_id="data-uuid", dataset_id="dataset-uuid", mode="soft")
# Delete specific data (hard deletion - removes orphaned entities)
delete(data_id="data-uuid", dataset_id="dataset-uuid", mode="hard")
```
## Development and Debugging
### Debugging
To use debugger, run:
```bash
mcp dev src/server.py
```
Open inspector with timeout passed:
```
http://localhost:5173?timeout=120000
```
To apply new changes while developing cognee you need to do:
1. Update dependencies in cognee folder if needed
2. `uv sync --dev --all-extras --reinstall`
3. `mcp dev src/server.py`
### Development
In order to use local cognee:
1. Uncomment the following line in the cognee-mcp [`pyproject.toml`](pyproject.toml) file and set the cognee root path.
```
#"cognee[postgres,codegraph,gemini,huggingface,docs,neo4j] @ file:/Users/<username>/Desktop/cognee"
```
Remember to replace `file:/Users/<username>/Desktop/cognee` with your actual cognee root path.
2. Install dependencies with uv in the mcp folder
```
uv sync --reinstall
```
## Code of Conduct
We are committed to making open source an enjoyable and respectful experience for our community. See <a href="https://github.com/topoteretes/cognee/blob/main/CODE_OF_CONDUCT.md"><code>CODE_OF_CONDUCT</code></a> for more information.
## 💫 Contributors
<a href="https://github.com/topoteretes/cognee/graphs/contributors">
<img alt="contributors" src="https://contrib.rocks/image?repo=topoteretes/cognee"/>
</a>
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=topoteretes/cognee&type=Date)](https://star-history.com/#topoteretes/cognee&Date)