cognee/evals/comparative_eval/README.md
lxobr cfe9c949a7
feat: unify comparative evals (#916)
<!-- .github/pull_request_template.md -->

## Description
<!-- Provide a clear description of the changes in this PR -->
- Comparative Framework: Independent benchmarking system for evaluating
different RAG/QA systems
- HotpotQA Dataset: 50 instances corpus and corresponding QA pairs for
standardized evaluation
- Base Class: Abstract QABenchmarkRAG with async pipeline for document
ingestion and question answering
- Three Benchmarks: Standalone implementations for Mem0, LightRAG, and
Graphiti with specific dependencies

## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin.

---------

Co-authored-by: hajdul88 <52442977+hajdul88@users.noreply.github.com>
2025-06-11 10:06:09 +02:00

885 B

Comparative QA Benchmarks

Independent benchmarks for different QA/RAG systems using HotpotQA dataset.

Dataset Files

  • hotpot_50_corpus.json - 50 instances from HotpotQA
  • hotpot_50_qa_pairs.json - Corresponding question-answer pairs

Benchmarks

Each benchmark can be run independently with appropriate dependencies:

Mem0

pip install mem0ai openai
python qa_benchmark_mem0.py

LightRAG

pip install "lightrag-hku[api]"
python qa_benchmark_lightrag.py

Graphiti

pip install graphiti-core
python qa_benchmark_graphiti.py

Environment

Create .env with required API keys:

  • OPENAI_API_KEY (all benchmarks)
  • NEO4J_URI, NEO4J_USER, NEO4J_PASSWORD (Graphiti only)

Usage

Each benchmark inherits from QABenchmarkRAG base class and can be configured independently.

Results

Updated results will be posted soon.