cognee/evals/eval_on_hotpot.py
alekszievr 4e3a666b33
Feat: Save and load contexts and answers for eval (#462)
* feat: make tasks a configurable argument in the cognify function

* fix: add data points task

* eval on random samples instead of first couple

* Save and load contexts and answers

* Fix random seed usage and handle empty descriptions

* include insights search in cognee option

* create output dir if doesnt exist

---------

Co-authored-by: lxobr <122801072+lxobr@users.noreply.github.com>
2025-01-22 16:17:01 +01:00

191 lines
6.1 KiB
Python

import argparse
import asyncio
import statistics
from deepeval.dataset import EvaluationDataset
from deepeval.test_case import LLMTestCase
from tqdm import tqdm
import logging
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt, render_prompt
from evals.qa_dataset_utils import load_qa_dataset
from evals.qa_metrics_utils import get_metrics
from evals.qa_context_provider_utils import qa_context_providers, valid_pipeline_slices
import random
import os
import json
from pathlib import Path
logger = logging.getLogger(__name__)
async def answer_qa_instance(instance, context_provider, contexts_filename):
if os.path.exists(contexts_filename):
with open(contexts_filename, "r") as file:
preloaded_contexts = json.load(file)
else:
preloaded_contexts = {}
if instance["_id"] in preloaded_contexts:
context = preloaded_contexts[instance["_id"]]
else:
context = await context_provider(instance)
preloaded_contexts[instance["_id"]] = context
with open(contexts_filename, "w") as file:
json.dump(preloaded_contexts, file)
args = {
"question": instance["question"],
"context": context,
}
user_prompt = render_prompt("context_for_question.txt", args)
system_prompt = read_query_prompt("answer_hotpot_using_cognee_search.txt")
llm_client = get_llm_client()
answer_prediction = await llm_client.acreate_structured_output(
text_input=user_prompt,
system_prompt=system_prompt,
response_model=str,
)
return answer_prediction
async def deepeval_answers(instances, answers, eval_metrics):
test_cases = []
for instance, answer in zip(instances, answers):
test_case = LLMTestCase(
input=instance["question"], actual_output=answer, expected_output=instance["answer"]
)
test_cases.append(test_case)
eval_set = EvaluationDataset(test_cases)
eval_results = eval_set.evaluate(eval_metrics)
return eval_results
async def deepeval_on_instances(
instances, context_provider, eval_metrics, answers_filename, contexts_filename
):
if os.path.exists(answers_filename):
with open(answers_filename, "r") as file:
preloaded_answers = json.load(file)
else:
preloaded_answers = {}
answers = []
for instance in tqdm(instances, desc="Getting answers"):
if instance["_id"] in preloaded_answers:
answer = preloaded_answers[instance["_id"]]
else:
answer = await answer_qa_instance(instance, context_provider, contexts_filename)
preloaded_answers[instance["_id"]] = answer
answers.append(answer)
with open(answers_filename, "w") as file:
json.dump(preloaded_answers, file)
eval_results = await deepeval_answers(instances, answers, eval_metrics)
score_lists_dict = {}
for instance_result in eval_results.test_results:
for metric_result in instance_result.metrics_data:
if metric_result.name not in score_lists_dict:
score_lists_dict[metric_result.name] = []
score_lists_dict[metric_result.name].append(metric_result.score)
avg_scores = {
metric_name: statistics.mean(scorelist)
for metric_name, scorelist in score_lists_dict.items()
}
return avg_scores
async def eval_on_QA_dataset(
dataset_name_or_filename: str, context_provider_name, num_samples, metric_name_list, out_path
):
dataset = load_qa_dataset(dataset_name_or_filename)
context_provider = qa_context_providers[context_provider_name]
eval_metrics = get_metrics(metric_name_list)
out_path = Path(out_path)
if not out_path.exists():
out_path.mkdir(parents=True, exist_ok=True)
random.seed(42)
instances = dataset if not num_samples else random.sample(dataset, num_samples)
contexts_filename = out_path / Path(
f"contexts_{dataset_name_or_filename.split('.')[0]}_{context_provider_name}.json"
)
if "promptfoo_metrics" in eval_metrics:
promptfoo_results = await eval_metrics["promptfoo_metrics"].measure(
instances, context_provider, contexts_filename
)
else:
promptfoo_results = {}
answers_filename = out_path / Path(
f"answers_{dataset_name_or_filename.split('.')[0]}_{context_provider_name}.json"
)
deepeval_results = await deepeval_on_instances(
instances,
context_provider,
eval_metrics["deepeval_metrics"],
answers_filename,
contexts_filename,
)
results = promptfoo_results | deepeval_results
return results
async def incremental_eval_on_QA_dataset(
dataset_name_or_filename: str, num_samples, metric_name_list, out_path
):
pipeline_slice_names = valid_pipeline_slices.keys()
incremental_results = {}
for pipeline_slice_name in pipeline_slice_names:
results = await eval_on_QA_dataset(
dataset_name_or_filename, pipeline_slice_name, num_samples, metric_name_list, out_path
)
incremental_results[pipeline_slice_name] = results
return incremental_results
async def main():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True, help="Which dataset to evaluate on")
parser.add_argument(
"--rag_option",
type=str,
choices=list(qa_context_providers.keys()) + ["cognee_incremental"],
required=True,
help="RAG option to use for providing context",
)
parser.add_argument("--num_samples", type=int, default=500)
parser.add_argument("--metrics", type=str, nargs="+", default=["Correctness"])
args = parser.parse_args()
if args.rag_option == "cognee_incremental":
avg_scores = await incremental_eval_on_QA_dataset(
args.dataset, args.num_samples, args.metrics
)
else:
avg_scores = await eval_on_QA_dataset(
args.dataset, args.rag_option, args.num_samples, args.metrics
)
logger.info(f"{avg_scores}")
if __name__ == "__main__":
asyncio.run(main())