Feat: Save and load contexts and answers for eval (#462)
* feat: make tasks a configurable argument in the cognify function * fix: add data points task * eval on random samples instead of first couple * Save and load contexts and answers * Fix random seed usage and handle empty descriptions * include insights search in cognee option * create output dir if doesnt exist --------- Co-authored-by: lxobr <122801072+lxobr@users.noreply.github.com>
This commit is contained in:
parent
c9536f97a5
commit
4e3a666b33
5 changed files with 97 additions and 24 deletions
|
|
@ -10,12 +10,29 @@ from cognee.infrastructure.llm.prompts import read_query_prompt, render_prompt
|
|||
from evals.qa_dataset_utils import load_qa_dataset
|
||||
from evals.qa_metrics_utils import get_metrics
|
||||
from evals.qa_context_provider_utils import qa_context_providers, valid_pipeline_slices
|
||||
import random
|
||||
import os
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def answer_qa_instance(instance, context_provider):
|
||||
context = await context_provider(instance)
|
||||
async def answer_qa_instance(instance, context_provider, contexts_filename):
|
||||
if os.path.exists(contexts_filename):
|
||||
with open(contexts_filename, "r") as file:
|
||||
preloaded_contexts = json.load(file)
|
||||
else:
|
||||
preloaded_contexts = {}
|
||||
|
||||
if instance["_id"] in preloaded_contexts:
|
||||
context = preloaded_contexts[instance["_id"]]
|
||||
else:
|
||||
context = await context_provider(instance)
|
||||
preloaded_contexts[instance["_id"]] = context
|
||||
|
||||
with open(contexts_filename, "w") as file:
|
||||
json.dump(preloaded_contexts, file)
|
||||
|
||||
args = {
|
||||
"question": instance["question"],
|
||||
|
|
@ -49,12 +66,27 @@ async def deepeval_answers(instances, answers, eval_metrics):
|
|||
return eval_results
|
||||
|
||||
|
||||
async def deepeval_on_instances(instances, context_provider, eval_metrics):
|
||||
async def deepeval_on_instances(
|
||||
instances, context_provider, eval_metrics, answers_filename, contexts_filename
|
||||
):
|
||||
if os.path.exists(answers_filename):
|
||||
with open(answers_filename, "r") as file:
|
||||
preloaded_answers = json.load(file)
|
||||
else:
|
||||
preloaded_answers = {}
|
||||
|
||||
answers = []
|
||||
for instance in tqdm(instances, desc="Getting answers"):
|
||||
answer = await answer_qa_instance(instance, context_provider)
|
||||
if instance["_id"] in preloaded_answers:
|
||||
answer = preloaded_answers[instance["_id"]]
|
||||
else:
|
||||
answer = await answer_qa_instance(instance, context_provider, contexts_filename)
|
||||
preloaded_answers[instance["_id"]] = answer
|
||||
answers.append(answer)
|
||||
|
||||
with open(answers_filename, "w") as file:
|
||||
json.dump(preloaded_answers, file)
|
||||
|
||||
eval_results = await deepeval_answers(instances, answers, eval_metrics)
|
||||
score_lists_dict = {}
|
||||
for instance_result in eval_results.test_results:
|
||||
|
|
@ -72,21 +104,38 @@ async def deepeval_on_instances(instances, context_provider, eval_metrics):
|
|||
|
||||
|
||||
async def eval_on_QA_dataset(
|
||||
dataset_name_or_filename: str, context_provider_name, num_samples, metric_name_list
|
||||
dataset_name_or_filename: str, context_provider_name, num_samples, metric_name_list, out_path
|
||||
):
|
||||
dataset = load_qa_dataset(dataset_name_or_filename)
|
||||
context_provider = qa_context_providers[context_provider_name]
|
||||
eval_metrics = get_metrics(metric_name_list)
|
||||
instances = dataset if not num_samples else dataset[:num_samples]
|
||||
|
||||
out_path = Path(out_path)
|
||||
if not out_path.exists():
|
||||
out_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
random.seed(42)
|
||||
instances = dataset if not num_samples else random.sample(dataset, num_samples)
|
||||
|
||||
contexts_filename = out_path / Path(
|
||||
f"contexts_{dataset_name_or_filename.split('.')[0]}_{context_provider_name}.json"
|
||||
)
|
||||
if "promptfoo_metrics" in eval_metrics:
|
||||
promptfoo_results = await eval_metrics["promptfoo_metrics"].measure(
|
||||
instances, context_provider
|
||||
instances, context_provider, contexts_filename
|
||||
)
|
||||
else:
|
||||
promptfoo_results = {}
|
||||
|
||||
answers_filename = out_path / Path(
|
||||
f"answers_{dataset_name_or_filename.split('.')[0]}_{context_provider_name}.json"
|
||||
)
|
||||
deepeval_results = await deepeval_on_instances(
|
||||
instances, context_provider, eval_metrics["deepeval_metrics"]
|
||||
instances,
|
||||
context_provider,
|
||||
eval_metrics["deepeval_metrics"],
|
||||
answers_filename,
|
||||
contexts_filename,
|
||||
)
|
||||
|
||||
results = promptfoo_results | deepeval_results
|
||||
|
|
@ -95,14 +144,14 @@ async def eval_on_QA_dataset(
|
|||
|
||||
|
||||
async def incremental_eval_on_QA_dataset(
|
||||
dataset_name_or_filename: str, num_samples, metric_name_list
|
||||
dataset_name_or_filename: str, num_samples, metric_name_list, out_path
|
||||
):
|
||||
pipeline_slice_names = valid_pipeline_slices.keys()
|
||||
|
||||
incremental_results = {}
|
||||
for pipeline_slice_name in pipeline_slice_names:
|
||||
results = await eval_on_QA_dataset(
|
||||
dataset_name_or_filename, pipeline_slice_name, num_samples, metric_name_list
|
||||
dataset_name_or_filename, pipeline_slice_name, num_samples, metric_name_list, out_path
|
||||
)
|
||||
incremental_results[pipeline_slice_name] = results
|
||||
|
||||
|
|
|
|||
|
|
@ -29,7 +29,7 @@ class PromptfooMetric:
|
|||
else:
|
||||
raise Exception(f"{metric_name} is not a valid promptfoo metric")
|
||||
|
||||
async def measure(self, instances, context_provider):
|
||||
async def measure(self, instances, context_provider, contexts_filename):
|
||||
with open(os.path.join(os.getcwd(), "evals/promptfoo_config_template.yaml"), "r") as file:
|
||||
config = yaml.safe_load(file)
|
||||
|
||||
|
|
@ -40,10 +40,20 @@ class PromptfooMetric:
|
|||
]
|
||||
}
|
||||
|
||||
# Fill config file with test cases
|
||||
tests = []
|
||||
if os.path.exists(contexts_filename):
|
||||
with open(contexts_filename, "r") as file:
|
||||
preloaded_contexts = json.load(file)
|
||||
else:
|
||||
preloaded_contexts = {}
|
||||
|
||||
for instance in instances:
|
||||
context = await context_provider(instance)
|
||||
if instance["_id"] in preloaded_contexts:
|
||||
context = preloaded_contexts[instance["_id"]]
|
||||
else:
|
||||
context = await context_provider(instance)
|
||||
preloaded_contexts[instance["_id"]] = context
|
||||
|
||||
test = {
|
||||
"vars": {
|
||||
"name": instance["question"][:15],
|
||||
|
|
@ -52,7 +62,10 @@ class PromptfooMetric:
|
|||
}
|
||||
}
|
||||
tests.append(test)
|
||||
|
||||
config["tests"] = tests
|
||||
with open(contexts_filename, "w") as file:
|
||||
json.dump(preloaded_contexts, file)
|
||||
|
||||
# Write the updated YAML back, preserving formatting and structure
|
||||
updated_yaml_file_path = os.path.join(os.getcwd(), "config_with_context.yaml")
|
||||
|
|
|
|||
|
|
@ -39,10 +39,22 @@ def _insight_to_string(triplet: tuple) -> str:
|
|||
return ""
|
||||
|
||||
node1_name = node1["name"] if "name" in node1 else "N/A"
|
||||
node1_description = node1["description"] if "description" in node1 else node1["text"]
|
||||
node1_description = (
|
||||
node1["description"]
|
||||
if "description" in node1
|
||||
else node1["text"]
|
||||
if "text" in node1
|
||||
else "N/A"
|
||||
)
|
||||
node1_string = f"name: {node1_name}, description: {node1_description}"
|
||||
node2_name = node2["name"] if "name" in node2 else "N/A"
|
||||
node2_description = node2["description"] if "description" in node2 else node2["text"]
|
||||
node2_description = (
|
||||
node2["description"]
|
||||
if "description" in node2
|
||||
else node2["text"]
|
||||
if "text" in node2
|
||||
else "N/A"
|
||||
)
|
||||
node2_string = f"name: {node2_name}, description: {node2_description}"
|
||||
|
||||
edge_string = edge.get("relationship_name", "")
|
||||
|
|
@ -58,7 +70,7 @@ def _insight_to_string(triplet: tuple) -> str:
|
|||
async def get_context_with_cognee(
|
||||
instance: dict,
|
||||
task_indices: list[int] = None,
|
||||
search_types: list[SearchType] = [SearchType.SUMMARIES, SearchType.CHUNKS],
|
||||
search_types: list[SearchType] = [SearchType.INSIGHTS, SearchType.SUMMARIES, SearchType.CHUNKS],
|
||||
) -> str:
|
||||
await cognify_instance(instance, task_indices)
|
||||
|
||||
|
|
|
|||
|
|
@ -14,6 +14,10 @@
|
|||
],
|
||||
"metric_names": [
|
||||
"Correctness",
|
||||
"Comprehensiveness"
|
||||
"Comprehensiveness",
|
||||
"Directness",
|
||||
"Diversity",
|
||||
"Empowerment",
|
||||
"promptfoo.directness"
|
||||
]
|
||||
}
|
||||
|
|
|
|||
|
|
@ -22,17 +22,12 @@ async def run_evals_on_paramset(paramset: dict, out_path: str):
|
|||
|
||||
if rag_option == "cognee_incremental":
|
||||
result = await incremental_eval_on_QA_dataset(
|
||||
dataset,
|
||||
num_samples,
|
||||
paramset["metric_names"],
|
||||
dataset, num_samples, paramset["metric_names"], out_path
|
||||
)
|
||||
results[dataset][num_samples] |= result
|
||||
else:
|
||||
result = await eval_on_QA_dataset(
|
||||
dataset,
|
||||
rag_option,
|
||||
num_samples,
|
||||
paramset["metric_names"],
|
||||
dataset, rag_option, num_samples, paramset["metric_names"], out_path
|
||||
)
|
||||
results[dataset][num_samples][rag_option] = result
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue