* feat: make tasks a configurable argument in the cognify function * fix: add data points task * eval on random samples instead of first couple * Save and load contexts and answers * Fix random seed usage and handle empty descriptions * include insights search in cognee option * create output dir if doesnt exist --------- Co-authored-by: lxobr <122801072+lxobr@users.noreply.github.com>
92 lines
3.1 KiB
Python
92 lines
3.1 KiB
Python
from evals.promptfoo_wrapper import PromptfooWrapper
|
|
import os
|
|
import yaml
|
|
import json
|
|
import shutil
|
|
from cognee.infrastructure.llm.prompts.llm_judge_prompts import llm_judge_prompts
|
|
|
|
|
|
def is_valid_promptfoo_metric(metric_name: str):
|
|
try:
|
|
prefix, suffix = metric_name.split(".")
|
|
except ValueError:
|
|
return False
|
|
if prefix != "promptfoo":
|
|
return False
|
|
if suffix not in llm_judge_prompts:
|
|
return False
|
|
return True
|
|
|
|
|
|
class PromptfooMetric:
|
|
def __init__(self, metric_name_list):
|
|
promptfoo_path = shutil.which("promptfoo")
|
|
self.wrapper = PromptfooWrapper(promptfoo_path=promptfoo_path)
|
|
self.prompts = {}
|
|
for metric_name in metric_name_list:
|
|
if is_valid_promptfoo_metric(metric_name):
|
|
self.prompts[metric_name] = llm_judge_prompts[metric_name.split(".")[1]]
|
|
else:
|
|
raise Exception(f"{metric_name} is not a valid promptfoo metric")
|
|
|
|
async def measure(self, instances, context_provider, contexts_filename):
|
|
with open(os.path.join(os.getcwd(), "evals/promptfoo_config_template.yaml"), "r") as file:
|
|
config = yaml.safe_load(file)
|
|
|
|
config["defaultTest"] = {
|
|
"assert": [
|
|
{"type": "llm-rubric", "value": prompt, "name": metric_name}
|
|
for metric_name, prompt in self.prompts.items()
|
|
]
|
|
}
|
|
|
|
tests = []
|
|
if os.path.exists(contexts_filename):
|
|
with open(contexts_filename, "r") as file:
|
|
preloaded_contexts = json.load(file)
|
|
else:
|
|
preloaded_contexts = {}
|
|
|
|
for instance in instances:
|
|
if instance["_id"] in preloaded_contexts:
|
|
context = preloaded_contexts[instance["_id"]]
|
|
else:
|
|
context = await context_provider(instance)
|
|
preloaded_contexts[instance["_id"]] = context
|
|
|
|
test = {
|
|
"vars": {
|
|
"name": instance["question"][:15],
|
|
"question": instance["question"],
|
|
"context": context,
|
|
}
|
|
}
|
|
tests.append(test)
|
|
|
|
config["tests"] = tests
|
|
with open(contexts_filename, "w") as file:
|
|
json.dump(preloaded_contexts, file)
|
|
|
|
# Write the updated YAML back, preserving formatting and structure
|
|
updated_yaml_file_path = os.path.join(os.getcwd(), "config_with_context.yaml")
|
|
with open(updated_yaml_file_path, "w") as file:
|
|
yaml.dump(config, file)
|
|
|
|
self.wrapper.run_eval(
|
|
prompt_file=os.path.join(os.getcwd(), "evals/promptfooprompt.json"),
|
|
config_file=os.path.join(os.getcwd(), "config_with_context.yaml"),
|
|
out_format="json",
|
|
)
|
|
|
|
file_path = os.path.join(os.getcwd(), "benchmark_results.json")
|
|
|
|
# Read and parse the JSON file
|
|
with open(file_path, "r") as file:
|
|
results = json.load(file)
|
|
|
|
scores = {}
|
|
|
|
for result in results["results"]["results"][0]["gradingResult"]["componentResults"]:
|
|
scores[result["assertion"]["name"]] = result["score"]
|
|
|
|
return scores
|