* Update cognify and the networkx client to prepare for running in Neo4j * Fix for openai model * Add the fix to the infra so that the models can be passed to the library. Enable llm_provider to be passed. * Auto graph generation now works with neo4j * Added fixes for both neo4j and networkx * Explicitly name semantic node connections * Added updated docs, readme, chunkers and updates to cognify * Make docs build trigger only when changes on it happen * Update docs, test git actions * Separate cognify logic into tasks * Introduce dspy knowledge graph extraction --------- Co-authored-by: Boris Arzentar <borisarzentar@gmail.com>
4.3 KiB
cognee API Reference
Overview
The Cognee API has
- via Python library
- FastAPI server
Python Library
Module: cognee.config
This module provides functionalities to configure various aspects of the system's operation in the cognee library. It interfaces with the cognee.infrastructure.infrastructure_config module to set configurations for system directories, machine learning models, and other components essential for system performance.
Overview
The config class in this module offers a series of static methods to configure the system's directories, various machine learning models, and other parameters.
Usage
Import the module as follows:
from cognee.config import config
Methods
system_root_directory(system_root_directory: str)
Sets the root directory of the system where essential system files and operations are managed. Parameters:
system_root_directory (str): The path to set as the system's root directory.
Example:
config.system_root_directory('/path/to/system/root')
data_root_directory(data_root_directory: str)
Sets the directory for storing data used and generated by the system.
Parameters:
data_root_directory (str): The path to set as the data root directory.
Example:
config.data_root_directory('/path/to/data/root')
set_classification_model(classification_model: object)
Assigns a machine learning model for classification tasks within the system.
Parameters:
classification_model (object): The Pydantic model to use for classification.
Check cognee.shared.data_models for existing models.
Example:
config.set_classification_model(model)
set_summarization_model(summarization_model: object)
Sets the Pydantic model to be used for summarization tasks.
Parameters:
summarization_model (object): The model to use for summarization.
Check cognee.shared.data_models for existing models.
Example:
config.set_summarization_model(my_summarization_model)
set_llm_model(llm_model: object)
Determines the model to handle LLMs. Parameters:
llm_model (object): The model to use for LLMs.
Example:
config.set_llm_model("OpenAI")
set_graph_engine(graph_engine: object)
Sets the engine to manage graph processing tasks.
Parameters:
graph_engine (object): The engine for graph tasks.
Example:
from cognee.shared.data_models import GraphDBType
config.set_graph_engine(GraphDBType.NEO4J)
API
For each API endpoint, provide the following details:
Endpoint 1: Root
- URL: /add
- Method: POST
- Auth Required: No
- Description: Root endpoint that returns a welcome message.
Response
{
"message": "Hello, World, I am alive!"
}
Endpoint 1: Health Check
- URL: /health
- Method: GET
- Auth Required: No
- Description: Health check endpoint that returns the server status.
Response
{
"status": "OK"
}
Endpoint 2: Add
- URL: /Add
- Method: POST
- Auth Required: Yes | No
- Description: This endpoint is responsible for adding data to the graph.
Parameters
| Name | Type | Required | Description |
|---|---|---|---|
| data | Union[str, BinaryIO, List[Union[str, BinaryIO]]] | Yes | The data to be added |
| dataset_id | UUID | Yes | The ID of the dataset. |
| dataset_name | String | Yes | The name of the dataset. |
Response
{
"response": "data"
}
Endpoint 3: Cognify
- URL: /cognify
- Method: POST
- Auth Required: Yes | No
- Description: This endpoint is responsible for the cognitive processing of the content.
Parameters
| Name | Type | Required | Description |
|---|---|---|---|
| datasets | Union[str, List[str]] | Yes | The data to be added |
Response
{
"response": "data"
}
Endpoint 4: search
- URL: /search
- Method: POST
- Auth Required: No
- Description: This endpoint is responsible for searching for nodes in the graph.
Parameters
| Name | Type | Required | Description |
|---|---|---|---|
| query_params | Dict[str, Any] | Yes | Description of the parameter. |
Response
{
"response": "data"
}