<!-- .github/pull_request_template.md -->
## Description
<!--
Please provide a clear, human-generated description of the changes in
this PR.
DO NOT use AI-generated descriptions. We want to understand your thought
process and reasoning.
-->
## Type of Change
<!-- Please check the relevant option -->
- [ ] Bug fix (non-breaking change that fixes an issue)
- [ ] New feature (non-breaking change that adds functionality)
- [ ] Breaking change (fix or feature that would cause existing
functionality to change)
- [ ] Documentation update
- [x] Code refactoring
- [ ] Performance improvement
- [ ] Other (please specify):
## Screenshots/Videos (if applicable)
<!-- Add screenshots or videos to help explain your changes -->
## Pre-submission Checklist
<!-- Please check all boxes that apply before submitting your PR -->
- [ ] **I have tested my changes thoroughly before submitting this PR**
- [ ] **This PR contains minimal changes necessary to address the
issue/feature**
- [ ] My code follows the project's coding standards and style
guidelines
- [ ] I have added tests that prove my fix is effective or that my
feature works
- [ ] I have added necessary documentation (if applicable)
- [ ] All new and existing tests pass
- [ ] I have searched existing PRs to ensure this change hasn't been
submitted already
- [ ] I have linked any relevant issues in the description
- [ ] My commits have clear and descriptive messages
## DCO Affirmation
I affirm that all code in every commit of this pull request conforms to
the terms of the Topoteretes Developer Certificate of Origin.
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit
* **Documentation**
* Deprecated legacy examples and added a migration guide mapping old
paths to new locations
* Added a comprehensive new-examples README detailing configurations,
pipelines, demos, and migration notes
* **New Features**
* Added many runnable examples and demos: database configs,
embedding/LLM setups, permissions and access-control, custom pipelines
(organizational, product recommendation, code analysis, procurement),
multimedia, visualization, temporal/ontology demos, and a local UI
starter
* **Chores**
* Updated CI/test entrypoints to use the new-examples layout
<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
---------
Co-authored-by: lxobr <122801072+lxobr@users.noreply.github.com>
3.7 KiB
3.7 KiB
Cognee Examples
📁 Structure
| Folder | Purpose |
|---|---|
configurations/ |
Database, LLM, embedding, and permission setups |
custom_pipelines/ |
Building custom memory pipelines |
demos/ |
Feature demos and getting started examples |
🔧 Configurations
| Path | Description |
|---|---|
database_examples/chromadb_vector_database_configuration.py |
ChromaDB vector database |
database_examples/kuzu_graph_database_configuration.py |
KuzuDB graph database |
database_examples/neo4j_graph_database_configuration.py |
Neo4j graph database |
database_examples/neptune_analytics_aws_database_configuration.py |
AWS Neptune Analytics |
database_examples/pgvector_postgres_vector_database_configuration.py |
PostgreSQL with PGVector |
database_examples/s3_storage_configuration.py |
Amazon S3 storage |
llm_configurations/openai_setup.py |
OpenAI LLM setup |
llm_configurations/azure_openai_setup.py |
Azure OpenAI LLM setup |
embedding_configurations/openai_setup.py |
OpenAI embeddings |
embedding_configurations/azure_openai_setup.py |
Azure OpenAI embeddings |
structured_output_configurations.py/baml_setup.py |
BAML structured output |
structured_output_configurations.py/litellm_intructor_setup.py |
LiteLLM Instructor setup |
permissions_example/ |
Multi-user access control (with sample PDF) |
distributed_execution_with_modal_example.py |
Scale with Modal.com |
🔄 Custom Pipelines
| Path | Description |
|---|---|
custom_cognify_pipeline_example.py |
Customize cognify pipelines |
memify_coding_agent_rule_extraction_example.py |
Extract rules from conversations |
relational_database_to_knowledge_graph_migration_example.py |
SQL to knowledge graph |
agentic_reasoning_procurement_example.py |
AI procurement assistant |
code_graph_repository_analysis_example.py |
Code repository analysis |
dynamic_steps_resume_analysis_hr_example.py |
CV/resume filtering |
organizational_hierarchy/ |
Org structure graphs (with JSON data) |
organizational_hierarchy/organizational_hierarchy_pipeline_low_level_example.py |
Low-level pipeline variant |
product_recommendation/ |
Recommendation system (with customer data) |
🎯 Demos
| Path | Description |
|---|---|
simple_default_cognee_pipelines_example.py |
Default pipeline usage ★ |
simple_document_qa/ |
Document Q&A (with alice_in_wonderland.txt) |
core_features_getting_started_example.py |
Intro to Cognee |
multimedia_processing/ |
Audio/image processing (with media files) |
ontology_reference_vocabulary/ |
Ontology as vocabulary (with OWL file) |
ontology_medical_comparison/ |
Medical ontology comparison (with papers + OWL) |
web_url_content_ingestion_example.py |
Extract from web pages and ingest directly to memory |
temporal_awareness_example.py |
Time-based queries |
retrievers_and_search_examples.py |
Retriever patterns and search types guide |
feedback_enrichment_minimal_example.py |
User feedback enrichment |
nodeset_memory_grouping_with_tags_example.py |
Memory grouping with tags |
weighted_edges_relationships_example.py |
Weighted edge relationships |
dynamic_multiple_weighted_edges_example.py |
Multiple weighted edges |
custom_graph_model_entity_schema_definition.py |
Custom entity schemas ★ |
graph_visualization_example.py |
Visualize knowledge graphs |
conversation_session_persistence_example.py |
Session persistence |
custom_prompt_guide.py |
Custom prompts for extraction |
direct_llm_call_for_structured_output_example.py |
Direct LLM structured output |
start_local_ui_frontend_example.py |
Launch Cognee UI |