cognee/docs/index.md
2024-08-08 13:37:55 +02:00

381 lines
6.7 KiB
Markdown

# cognee
#### Deterministic LLMs Outputs for AI Engineers
_Open-source framework for loading and structuring LLM context to create accurate and explainable AI solutions using knowledge graphs and vector stores_
---
[![Twitter Follow](https://img.shields.io/twitter/follow/tricalt?style=social)](https://twitter.com/tricalt)
[![Downloads](https://img.shields.io/pypi/dm/cognee.svg)](https://pypi.python.org/pypi/cognee)
[![Star on GitHub](https://img.shields.io/github/stars/topoteretes/cognee.svg?style=social)](https://github.com/topoteretes/cognee)
### Let's learn about cogneeHub!
cogneeHub is a free, open-source learning platform for those interested in creating deterministic LLM outputs. We help developers by using graphs, LLMs, and adding vector retrieval to their Machine Learning stack.
- **Get started** — [Get started with cognee quickly and try it out for yourself.](quickstart.md)
- **Conceptual Overview** — Learn about the [core concepts](conceptual_overview.md) of cognee and how it fits into your projects.
- **Data Engineering and LLMOps** — Learn about some [data engineering and llmops](data_engineering_llm_ops.md) core concepts that will help you build better AI apps.
- **RAGs** — We provide easy-to-follow [learning materials](rags.md) to help you learn about RAGs.
- **Research** — A list of resources to help you learn more about [cognee and LLM memory research](research.md)
- **Blog** — A blog where you can read about the [latest news and updates](blog/index.md) about cognee.
- **Support** — [Book time](https://www.cognee.ai/#bookTime) with our team.
[//]: # (- **Case Studies** — Read about [case studies](case_studies.md) that show how cognee can be used in real-world applications.)
### Vision
![Vision](img/roadmap.png)
### Architecture
![Architecture](img/architecture.png)
### Why use cognee?
The question of using cognee is fundamentally a question of why to have deterministic outputs for your llm workflows.
1. **Cost-effective** — cognee extends the capabilities of your LLMs without the need for expensive data processing tools.
2. **Self-contained** — cognee runs as a library and is simple to use
3. **Interpretable** — Navigate graphs instead of embeddings to understand your data.
4. **User Guided** — cognee lets you control your input and provide your own Pydantic data models
## License
This project is licensed under the terms of the Apache License 2.0.
[//]: # (<style>)
[//]: # ()
[//]: # (.container {)
[//]: # ()
[//]: # ( display: flex;)
[//]: # ()
[//]: # ( justify-content: space-around;)
[//]: # ()
[//]: # ( margin-top: 20px;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.container div {)
[//]: # ()
[//]: # ( width: 28%;)
[//]: # ()
[//]: # ( padding: 20px;)
[//]: # ()
[//]: # ( box-sizing: border-box;)
[//]: # ()
[//]: # ( border: 1px solid #e0e0e0;)
[//]: # ()
[//]: # ( border-radius: 8px;)
[//]: # ()
[//]: # ( background-color: #f9f9f9;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.container h2 {)
[//]: # ()
[//]: # ( font-size: 1.25em;)
[//]: # ()
[//]: # ( margin-bottom: 10px;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.container p {)
[//]: # ()
[//]: # ( margin-bottom: 20px;)
[//]: # ()
[//]: # ( line-height: 1.6;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.button-container {)
[//]: # ()
[//]: # ( text-align: center;)
[//]: # ()
[//]: # ( margin: 30px 0;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.button-container a {)
[//]: # ()
[//]: # ( display: inline-block;)
[//]: # ()
[//]: # ( padding: 15px 25px;)
[//]: # ()
[//]: # ( background-color: #007bff;)
[//]: # ()
[//]: # ( color: white;)
[//]: # ()
[//]: # ( text-decoration: none;)
[//]: # ()
[//]: # ( border-radius: 5px;)
[//]: # ()
[//]: # ( font-size: 1em;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.button-container a:hover {)
[//]: # ()
[//]: # ( background-color: #0056b3;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.resources {)
[//]: # ()
[//]: # ( margin-top: 40px;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.resources h2 {)
[//]: # ()
[//]: # ( font-size: 1.5em;)
[//]: # ()
[//]: # ( margin-bottom: 20px;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.resources ul {)
[//]: # ()
[//]: # ( list-style: none;)
[//]: # ()
[//]: # ( padding: 0;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.resources li {)
[//]: # ()
[//]: # ( margin-bottom: 10px;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.resources a {)
[//]: # ()
[//]: # ( color: #007bff;)
[//]: # ()
[//]: # ( text-decoration: none;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # ()
[//]: # (.resources a:hover {)
[//]: # ()
[//]: # ( text-decoration: underline;)
[//]: # ()
[//]: # (})
[//]: # ()
[//]: # (</style>)
[//]: # ()
[//]: # ()
[//]: # (# New to cognee?)
[//]: # ()
[//]: # ()
[//]: # (The getting started guide covers adding a GraphRAG data store to your AI app, sending events, identifying users, extracting actions and insights, and interconnecting separate datasets.)
[//]: # ()
[//]: # ()
[//]: # (<div class="button-container">)
[//]: # ()
[//]: # ( <a href="./quickstart.md">Get started</a>)
[//]: # ()
[//]: # (</div>)
[//]: # ()
[//]: # ()
[//]: # (<div class="container">)
[//]: # ()
[//]: # ( <div>)
[//]: # ()
[//]: # ( <h2>Ingest Data</h2>)
[//]: # ()
[//]: # ( <p>Learn how to manage ingestion of events, customer data or third party data for use with cognee.</p>)
[//]: # ()
[//]: # ( <a href="#">Explore</a>)
[//]: # ()
[//]: # ( </div>)
[//]: # ()
[//]: # ( <div>)
[//]: # ()
[//]: # ( <h2>Templates</h2>)
[//]: # ()
[//]: # ( <p>Analyze and enrich your data and improve LLM answers with a series of templates using cognee tasks and pipelines.</p>)
[//]: # ()
[//]: # ( <a href="#">Browse templates</a>)
[//]: # ()
[//]: # ( </div>)
[//]: # ()
[//]: # ( <div>)
[//]: # ()
[//]: # ( <h2>API</h2>)
[//]: # ()
[//]: # ( <p>Push or pull data to build custom functionality or create bespoke views for your business needs.</p>)
[//]: # ()
[//]: # ( <a href="#">Explore</a>)
[//]: # ()
[//]: # ( </div>)
[//]: # ()
[//]: # (</div>)
[//]: # ()
[//]: # ()
[//]: # (<div class="resources">)
[//]: # ()
[//]: # ( <h2>Resources</h2>)
[//]: # ()
[//]: # ( <ul>)
[//]: # ()
[//]: # ( <li><a href="#">What is GraphRAG</a></li>)
[//]: # ()
[//]: # ( <li><a href="#">Research</a></li>)
[//]: # ()
[//]: # ( <li><a href="#">Community</a></li>)
[//]: # ()
[//]: # ( <li><a href="#">Community</a></li>)
[//]: # ()
[//]: # ( <li><a href="#">API Reference</a></li>)
[//]: # ()
[//]: # ( <li><a href="#">Support</a></li>)
[//]: # ()
[//]: # ( </ul>)
[//]: # ()
[//]: # (</div>)