Compare commits

...
Sign in to create a new pull request.

1 commit

Author SHA1 Message Date
Daulet Amirkhanov
81fd8ccadd clean up tools list in mcp 2025-10-22 17:24:40 +01:00

View file

@ -14,7 +14,6 @@ import mcp.types as types
from mcp.server import FastMCP from mcp.server import FastMCP
from cognee.modules.storage.utils import JSONEncoder from cognee.modules.storage.utils import JSONEncoder
from starlette.responses import JSONResponse from starlette.responses import JSONResponse
from starlette.middleware import Middleware
from starlette.middleware.cors import CORSMiddleware from starlette.middleware.cors import CORSMiddleware
import uvicorn import uvicorn
@ -27,12 +26,10 @@ except ImportError:
try: try:
from cognee.tasks.codingagents.coding_rule_associations import ( from cognee.tasks.codingagents.coding_rule_associations import (
add_rule_associations, add_rule_associations,
get_existing_rules,
) )
except ModuleNotFoundError: except ModuleNotFoundError:
from .codingagents.coding_rule_associations import ( from .codingagents.coding_rule_associations import (
add_rule_associations, add_rule_associations,
get_existing_rules,
) )
@ -90,97 +87,6 @@ async def health_check(request):
return JSONResponse({"status": "ok"}) return JSONResponse({"status": "ok"})
@mcp.tool()
async def cognee_add_developer_rules(
base_path: str = ".", graph_model_file: str = None, graph_model_name: str = None
) -> list:
"""
Ingest core developer rule files into Cognee's memory layer.
This function loads a predefined set of developer-related configuration,
rule, and documentation files from the base repository and assigns them
to the special 'developer_rules' node set in Cognee. It ensures these
foundational files are always part of the structured memory graph.
Parameters
----------
base_path : str
Root path to resolve relative file paths. Defaults to current directory.
graph_model_file : str, optional
Optional path to a custom schema file for knowledge graph generation.
graph_model_name : str, optional
Optional class name to use from the graph_model_file schema.
Returns
-------
list
A message indicating how many rule files were scheduled for ingestion,
and how to check their processing status.
Notes
-----
- Each file is processed asynchronously in the background.
- Files are attached to the 'developer_rules' node set.
- Missing files are skipped with a logged warning.
"""
developer_rule_paths = [
".cursorrules",
".cursor/rules",
".same/todos.md",
".windsurfrules",
".clinerules",
"CLAUDE.md",
".sourcegraph/memory.md",
"AGENT.md",
"AGENTS.md",
]
async def cognify_task(file_path: str) -> None:
with redirect_stdout(sys.stderr):
logger.info(f"Starting cognify for: {file_path}")
try:
await cognee_client.add(file_path, node_set=["developer_rules"])
model = None
if graph_model_file and graph_model_name:
if cognee_client.use_api:
logger.warning(
"Custom graph models are not supported in API mode, ignoring."
)
else:
from cognee.shared.data_models import KnowledgeGraph
model = load_class(graph_model_file, graph_model_name)
await cognee_client.cognify(graph_model=model)
logger.info(f"Cognify finished for: {file_path}")
except Exception as e:
logger.error(f"Cognify failed for {file_path}: {str(e)}")
raise ValueError(f"Failed to cognify: {str(e)}")
tasks = []
for rel_path in developer_rule_paths:
abs_path = os.path.join(base_path, rel_path)
if os.path.isfile(abs_path):
tasks.append(asyncio.create_task(cognify_task(abs_path)))
else:
logger.warning(f"Skipped missing developer rule file: {abs_path}")
log_file = get_log_file_location()
return [
types.TextContent(
type="text",
text=(
f"Started cognify for {len(tasks)} developer rule files in background.\n"
f"All are added to the `developer_rules` node set.\n"
f"Use `cognify_status` or check logs at {log_file} to monitor progress."
),
)
]
@mcp.tool() @mcp.tool()
async def cognify( async def cognify(
data: str, graph_model_file: str = None, graph_model_name: str = None, custom_prompt: str = None data: str, graph_model_file: str = None, graph_model_name: str = None, custom_prompt: str = None
@ -407,75 +313,6 @@ async def save_interaction(data: str) -> list:
] ]
@mcp.tool()
async def codify(repo_path: str) -> list:
"""
Analyze and generate a code-specific knowledge graph from a software repository.
This function launches a background task that processes the provided repository
and builds a code knowledge graph. The function returns immediately while
the processing continues in the background due to MCP timeout constraints.
Parameters
----------
repo_path : str
Path to the code repository to analyze. This can be a local file path or a
relative path to a repository. The path should point to the root of the
repository or a specific directory within it.
Returns
-------
list
A list containing a single TextContent object with information about the
background task launch and how to check its status.
Notes
-----
- The function launches a background task and returns immediately
- The code graph generation may take significant time for larger repositories
- Use the codify_status tool to check the progress of the operation
- Process results are logged to the standard Cognee log file
- All stdout is redirected to stderr to maintain MCP communication integrity
"""
if cognee_client.use_api:
error_msg = "❌ Codify operation is not available in API mode. Please use direct mode for code graph pipeline."
logger.error(error_msg)
return [types.TextContent(type="text", text=error_msg)]
async def codify_task(repo_path: str):
# NOTE: MCP uses stdout to communicate, we must redirect all output
# going to stdout ( like the print function ) to stderr.
with redirect_stdout(sys.stderr):
logger.info("Codify process starting.")
from cognee.api.v1.cognify.code_graph_pipeline import run_code_graph_pipeline
results = []
async for result in run_code_graph_pipeline(repo_path, False):
results.append(result)
logger.info(result)
if all(results):
logger.info("Codify process finished succesfully.")
else:
logger.info("Codify process failed.")
asyncio.create_task(codify_task(repo_path))
log_file = get_log_file_location()
text = (
f"Background process launched due to MCP timeout limitations.\n"
f"To check current codify status use the codify_status tool\n"
f"or you can check the log file at: {log_file}"
)
return [
types.TextContent(
type="text",
text=text,
)
]
@mcp.tool() @mcp.tool()
async def search(search_query: str, search_type: str) -> list: async def search(search_query: str, search_type: str) -> list:
""" """
@ -630,45 +467,6 @@ async def search(search_query: str, search_type: str) -> list:
return [types.TextContent(type="text", text=search_results)] return [types.TextContent(type="text", text=search_results)]
@mcp.tool()
async def get_developer_rules() -> list:
"""
Retrieve all developer rules that were generated based on previous interactions.
This tool queries the Cognee knowledge graph and returns a list of developer
rules.
Parameters
----------
None
Returns
-------
list
A list containing a single TextContent object with the retrieved developer rules.
The format is plain text containing the developer rules in bulletpoints.
Notes
-----
- The specific logic for fetching rules is handled internally.
- This tool does not accept any parameters and is intended for simple rule inspection use cases.
"""
async def fetch_rules_from_cognee() -> str:
"""Collect all developer rules from Cognee"""
with redirect_stdout(sys.stderr):
if cognee_client.use_api:
logger.warning("Developer rules retrieval is not available in API mode")
return "Developer rules retrieval is not available in API mode"
developer_rules = await get_existing_rules(rules_nodeset_name="coding_agent_rules")
return developer_rules
rules_text = await fetch_rules_from_cognee()
return [types.TextContent(type="text", text=rules_text)]
@mcp.tool() @mcp.tool()
async def list_data(dataset_id: str = None) -> list: async def list_data(dataset_id: str = None) -> list:
""" """
@ -954,48 +752,6 @@ async def cognify_status():
return [types.TextContent(type="text", text=error_msg)] return [types.TextContent(type="text", text=error_msg)]
@mcp.tool()
async def codify_status():
"""
Get the current status of the codify pipeline.
This function retrieves information about current and recently completed codify operations
in the codebase dataset. It provides details on progress, success/failure status, and statistics
about the processed code repositories.
Returns
-------
list
A list containing a single TextContent object with the status information as a string.
The status includes information about active and completed jobs for the cognify_code_pipeline.
Notes
-----
- The function retrieves pipeline status specifically for the "cognify_code_pipeline" on the "codebase" dataset
- Status information includes job progress, execution time, and completion status
- The status is returned in string format for easy reading
- This operation is not available in API mode
"""
with redirect_stdout(sys.stderr):
try:
from cognee.modules.data.methods.get_unique_dataset_id import get_unique_dataset_id
from cognee.modules.users.methods import get_default_user
user = await get_default_user()
status = await cognee_client.get_pipeline_status(
[await get_unique_dataset_id("codebase", user)], "cognify_code_pipeline"
)
return [types.TextContent(type="text", text=str(status))]
except NotImplementedError:
error_msg = "❌ Pipeline status is not available in API mode"
logger.error(error_msg)
return [types.TextContent(type="text", text=error_msg)]
except Exception as e:
error_msg = f"❌ Failed to get codify status: {str(e)}"
logger.error(error_msg)
return [types.TextContent(type="text", text=error_msg)]
def node_to_string(node): def node_to_string(node):
node_data = ", ".join( node_data = ", ".join(
[f'{key}: "{value}"' for key, value in node.items() if key in ["id", "name"]] [f'{key}: "{value}"' for key, value in node.items() if key in ["id", "name"]]