clean up tools list in mcp

This commit is contained in:
Daulet Amirkhanov 2025-10-22 17:24:40 +01:00
parent 738759bc5b
commit 81fd8ccadd

View file

@ -14,7 +14,6 @@ import mcp.types as types
from mcp.server import FastMCP
from cognee.modules.storage.utils import JSONEncoder
from starlette.responses import JSONResponse
from starlette.middleware import Middleware
from starlette.middleware.cors import CORSMiddleware
import uvicorn
@ -27,12 +26,10 @@ except ImportError:
try:
from cognee.tasks.codingagents.coding_rule_associations import (
add_rule_associations,
get_existing_rules,
)
except ModuleNotFoundError:
from .codingagents.coding_rule_associations import (
add_rule_associations,
get_existing_rules,
)
@ -90,97 +87,6 @@ async def health_check(request):
return JSONResponse({"status": "ok"})
@mcp.tool()
async def cognee_add_developer_rules(
base_path: str = ".", graph_model_file: str = None, graph_model_name: str = None
) -> list:
"""
Ingest core developer rule files into Cognee's memory layer.
This function loads a predefined set of developer-related configuration,
rule, and documentation files from the base repository and assigns them
to the special 'developer_rules' node set in Cognee. It ensures these
foundational files are always part of the structured memory graph.
Parameters
----------
base_path : str
Root path to resolve relative file paths. Defaults to current directory.
graph_model_file : str, optional
Optional path to a custom schema file for knowledge graph generation.
graph_model_name : str, optional
Optional class name to use from the graph_model_file schema.
Returns
-------
list
A message indicating how many rule files were scheduled for ingestion,
and how to check their processing status.
Notes
-----
- Each file is processed asynchronously in the background.
- Files are attached to the 'developer_rules' node set.
- Missing files are skipped with a logged warning.
"""
developer_rule_paths = [
".cursorrules",
".cursor/rules",
".same/todos.md",
".windsurfrules",
".clinerules",
"CLAUDE.md",
".sourcegraph/memory.md",
"AGENT.md",
"AGENTS.md",
]
async def cognify_task(file_path: str) -> None:
with redirect_stdout(sys.stderr):
logger.info(f"Starting cognify for: {file_path}")
try:
await cognee_client.add(file_path, node_set=["developer_rules"])
model = None
if graph_model_file and graph_model_name:
if cognee_client.use_api:
logger.warning(
"Custom graph models are not supported in API mode, ignoring."
)
else:
from cognee.shared.data_models import KnowledgeGraph
model = load_class(graph_model_file, graph_model_name)
await cognee_client.cognify(graph_model=model)
logger.info(f"Cognify finished for: {file_path}")
except Exception as e:
logger.error(f"Cognify failed for {file_path}: {str(e)}")
raise ValueError(f"Failed to cognify: {str(e)}")
tasks = []
for rel_path in developer_rule_paths:
abs_path = os.path.join(base_path, rel_path)
if os.path.isfile(abs_path):
tasks.append(asyncio.create_task(cognify_task(abs_path)))
else:
logger.warning(f"Skipped missing developer rule file: {abs_path}")
log_file = get_log_file_location()
return [
types.TextContent(
type="text",
text=(
f"Started cognify for {len(tasks)} developer rule files in background.\n"
f"All are added to the `developer_rules` node set.\n"
f"Use `cognify_status` or check logs at {log_file} to monitor progress."
),
)
]
@mcp.tool()
async def cognify(
data: str, graph_model_file: str = None, graph_model_name: str = None, custom_prompt: str = None
@ -407,75 +313,6 @@ async def save_interaction(data: str) -> list:
]
@mcp.tool()
async def codify(repo_path: str) -> list:
"""
Analyze and generate a code-specific knowledge graph from a software repository.
This function launches a background task that processes the provided repository
and builds a code knowledge graph. The function returns immediately while
the processing continues in the background due to MCP timeout constraints.
Parameters
----------
repo_path : str
Path to the code repository to analyze. This can be a local file path or a
relative path to a repository. The path should point to the root of the
repository or a specific directory within it.
Returns
-------
list
A list containing a single TextContent object with information about the
background task launch and how to check its status.
Notes
-----
- The function launches a background task and returns immediately
- The code graph generation may take significant time for larger repositories
- Use the codify_status tool to check the progress of the operation
- Process results are logged to the standard Cognee log file
- All stdout is redirected to stderr to maintain MCP communication integrity
"""
if cognee_client.use_api:
error_msg = "❌ Codify operation is not available in API mode. Please use direct mode for code graph pipeline."
logger.error(error_msg)
return [types.TextContent(type="text", text=error_msg)]
async def codify_task(repo_path: str):
# NOTE: MCP uses stdout to communicate, we must redirect all output
# going to stdout ( like the print function ) to stderr.
with redirect_stdout(sys.stderr):
logger.info("Codify process starting.")
from cognee.api.v1.cognify.code_graph_pipeline import run_code_graph_pipeline
results = []
async for result in run_code_graph_pipeline(repo_path, False):
results.append(result)
logger.info(result)
if all(results):
logger.info("Codify process finished succesfully.")
else:
logger.info("Codify process failed.")
asyncio.create_task(codify_task(repo_path))
log_file = get_log_file_location()
text = (
f"Background process launched due to MCP timeout limitations.\n"
f"To check current codify status use the codify_status tool\n"
f"or you can check the log file at: {log_file}"
)
return [
types.TextContent(
type="text",
text=text,
)
]
@mcp.tool()
async def search(search_query: str, search_type: str) -> list:
"""
@ -630,45 +467,6 @@ async def search(search_query: str, search_type: str) -> list:
return [types.TextContent(type="text", text=search_results)]
@mcp.tool()
async def get_developer_rules() -> list:
"""
Retrieve all developer rules that were generated based on previous interactions.
This tool queries the Cognee knowledge graph and returns a list of developer
rules.
Parameters
----------
None
Returns
-------
list
A list containing a single TextContent object with the retrieved developer rules.
The format is plain text containing the developer rules in bulletpoints.
Notes
-----
- The specific logic for fetching rules is handled internally.
- This tool does not accept any parameters and is intended for simple rule inspection use cases.
"""
async def fetch_rules_from_cognee() -> str:
"""Collect all developer rules from Cognee"""
with redirect_stdout(sys.stderr):
if cognee_client.use_api:
logger.warning("Developer rules retrieval is not available in API mode")
return "Developer rules retrieval is not available in API mode"
developer_rules = await get_existing_rules(rules_nodeset_name="coding_agent_rules")
return developer_rules
rules_text = await fetch_rules_from_cognee()
return [types.TextContent(type="text", text=rules_text)]
@mcp.tool()
async def list_data(dataset_id: str = None) -> list:
"""
@ -954,48 +752,6 @@ async def cognify_status():
return [types.TextContent(type="text", text=error_msg)]
@mcp.tool()
async def codify_status():
"""
Get the current status of the codify pipeline.
This function retrieves information about current and recently completed codify operations
in the codebase dataset. It provides details on progress, success/failure status, and statistics
about the processed code repositories.
Returns
-------
list
A list containing a single TextContent object with the status information as a string.
The status includes information about active and completed jobs for the cognify_code_pipeline.
Notes
-----
- The function retrieves pipeline status specifically for the "cognify_code_pipeline" on the "codebase" dataset
- Status information includes job progress, execution time, and completion status
- The status is returned in string format for easy reading
- This operation is not available in API mode
"""
with redirect_stdout(sys.stderr):
try:
from cognee.modules.data.methods.get_unique_dataset_id import get_unique_dataset_id
from cognee.modules.users.methods import get_default_user
user = await get_default_user()
status = await cognee_client.get_pipeline_status(
[await get_unique_dataset_id("codebase", user)], "cognify_code_pipeline"
)
return [types.TextContent(type="text", text=str(status))]
except NotImplementedError:
error_msg = "❌ Pipeline status is not available in API mode"
logger.error(error_msg)
return [types.TextContent(type="text", text=error_msg)]
except Exception as e:
error_msg = f"❌ Failed to get codify status: {str(e)}"
logger.error(error_msg)
return [types.TextContent(type="text", text=error_msg)]
def node_to_string(node):
node_data = ", ".join(
[f'{key}: "{value}"' for key, value in node.items() if key in ["id", "name"]]