refactor: Remove codify and code_graph pipeline from main repo
This commit is contained in:
parent
8d7c4d5384
commit
c481b87d58
9 changed files with 14 additions and 413 deletions
29
.github/workflows/basic_tests.yml
vendored
29
.github/workflows/basic_tests.yml
vendored
|
|
@ -193,32 +193,3 @@ jobs:
|
|||
|
||||
- name: Run Simple Examples
|
||||
run: uv run python ./examples/python/simple_example.py
|
||||
|
||||
graph-tests:
|
||||
name: Run Basic Graph Tests
|
||||
runs-on: ubuntu-22.04
|
||||
env:
|
||||
LLM_PROVIDER: openai
|
||||
LLM_MODEL: ${{ secrets.LLM_MODEL }}
|
||||
LLM_ENDPOINT: ${{ secrets.LLM_ENDPOINT }}
|
||||
LLM_API_KEY: ${{ secrets.LLM_API_KEY }}
|
||||
LLM_API_VERSION: ${{ secrets.LLM_API_VERSION }}
|
||||
|
||||
EMBEDDING_PROVIDER: openai
|
||||
EMBEDDING_MODEL: ${{ secrets.EMBEDDING_MODEL }}
|
||||
EMBEDDING_ENDPOINT: ${{ secrets.EMBEDDING_ENDPOINT }}
|
||||
EMBEDDING_API_KEY: ${{ secrets.EMBEDDING_API_KEY }}
|
||||
EMBEDDING_API_VERSION: ${{ secrets.EMBEDDING_API_VERSION }}
|
||||
steps:
|
||||
- name: Check out repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Cognee Setup
|
||||
uses: ./.github/actions/cognee_setup
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
|
||||
- name: Run Graph Tests
|
||||
run: uv run python ./examples/python/code_graph_example.py --repo_path ./cognee/tasks/graph
|
||||
|
|
|
|||
|
|
@ -407,75 +407,6 @@ async def save_interaction(data: str) -> list:
|
|||
]
|
||||
|
||||
|
||||
@mcp.tool()
|
||||
async def codify(repo_path: str) -> list:
|
||||
"""
|
||||
Analyze and generate a code-specific knowledge graph from a software repository.
|
||||
|
||||
This function launches a background task that processes the provided repository
|
||||
and builds a code knowledge graph. The function returns immediately while
|
||||
the processing continues in the background due to MCP timeout constraints.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
repo_path : str
|
||||
Path to the code repository to analyze. This can be a local file path or a
|
||||
relative path to a repository. The path should point to the root of the
|
||||
repository or a specific directory within it.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list containing a single TextContent object with information about the
|
||||
background task launch and how to check its status.
|
||||
|
||||
Notes
|
||||
-----
|
||||
- The function launches a background task and returns immediately
|
||||
- The code graph generation may take significant time for larger repositories
|
||||
- Use the codify_status tool to check the progress of the operation
|
||||
- Process results are logged to the standard Cognee log file
|
||||
- All stdout is redirected to stderr to maintain MCP communication integrity
|
||||
"""
|
||||
|
||||
if cognee_client.use_api:
|
||||
error_msg = "❌ Codify operation is not available in API mode. Please use direct mode for code graph pipeline."
|
||||
logger.error(error_msg)
|
||||
return [types.TextContent(type="text", text=error_msg)]
|
||||
|
||||
async def codify_task(repo_path: str):
|
||||
# NOTE: MCP uses stdout to communicate, we must redirect all output
|
||||
# going to stdout ( like the print function ) to stderr.
|
||||
with redirect_stdout(sys.stderr):
|
||||
logger.info("Codify process starting.")
|
||||
from cognee.api.v1.cognify.code_graph_pipeline import run_code_graph_pipeline
|
||||
|
||||
results = []
|
||||
async for result in run_code_graph_pipeline(repo_path, False):
|
||||
results.append(result)
|
||||
logger.info(result)
|
||||
if all(results):
|
||||
logger.info("Codify process finished succesfully.")
|
||||
else:
|
||||
logger.info("Codify process failed.")
|
||||
|
||||
asyncio.create_task(codify_task(repo_path))
|
||||
|
||||
log_file = get_log_file_location()
|
||||
text = (
|
||||
f"Background process launched due to MCP timeout limitations.\n"
|
||||
f"To check current codify status use the codify_status tool\n"
|
||||
f"or you can check the log file at: {log_file}"
|
||||
)
|
||||
|
||||
return [
|
||||
types.TextContent(
|
||||
type="text",
|
||||
text=text,
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
@mcp.tool()
|
||||
async def search(search_query: str, search_type: str) -> list:
|
||||
"""
|
||||
|
|
@ -954,48 +885,6 @@ async def cognify_status():
|
|||
return [types.TextContent(type="text", text=error_msg)]
|
||||
|
||||
|
||||
@mcp.tool()
|
||||
async def codify_status():
|
||||
"""
|
||||
Get the current status of the codify pipeline.
|
||||
|
||||
This function retrieves information about current and recently completed codify operations
|
||||
in the codebase dataset. It provides details on progress, success/failure status, and statistics
|
||||
about the processed code repositories.
|
||||
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list containing a single TextContent object with the status information as a string.
|
||||
The status includes information about active and completed jobs for the cognify_code_pipeline.
|
||||
|
||||
Notes
|
||||
-----
|
||||
- The function retrieves pipeline status specifically for the "cognify_code_pipeline" on the "codebase" dataset
|
||||
- Status information includes job progress, execution time, and completion status
|
||||
- The status is returned in string format for easy reading
|
||||
- This operation is not available in API mode
|
||||
"""
|
||||
with redirect_stdout(sys.stderr):
|
||||
try:
|
||||
from cognee.modules.data.methods.get_unique_dataset_id import get_unique_dataset_id
|
||||
from cognee.modules.users.methods import get_default_user
|
||||
|
||||
user = await get_default_user()
|
||||
status = await cognee_client.get_pipeline_status(
|
||||
[await get_unique_dataset_id("codebase", user)], "cognify_code_pipeline"
|
||||
)
|
||||
return [types.TextContent(type="text", text=str(status))]
|
||||
except NotImplementedError:
|
||||
error_msg = "❌ Pipeline status is not available in API mode"
|
||||
logger.error(error_msg)
|
||||
return [types.TextContent(type="text", text=error_msg)]
|
||||
except Exception as e:
|
||||
error_msg = f"❌ Failed to get codify status: {str(e)}"
|
||||
logger.error(error_msg)
|
||||
return [types.TextContent(type="text", text=error_msg)]
|
||||
|
||||
|
||||
def node_to_string(node):
|
||||
node_data = ", ".join(
|
||||
[f'{key}: "{value}"' for key, value in node.items() if key in ["id", "name"]]
|
||||
|
|
|
|||
|
|
@ -21,7 +21,7 @@ from cognee.api.v1.notebooks.routers import get_notebooks_router
|
|||
from cognee.api.v1.permissions.routers import get_permissions_router
|
||||
from cognee.api.v1.settings.routers import get_settings_router
|
||||
from cognee.api.v1.datasets.routers import get_datasets_router
|
||||
from cognee.api.v1.cognify.routers import get_code_pipeline_router, get_cognify_router
|
||||
from cognee.api.v1.cognify.routers import get_cognify_router
|
||||
from cognee.api.v1.search.routers import get_search_router
|
||||
from cognee.api.v1.memify.routers import get_memify_router
|
||||
from cognee.api.v1.add.routers import get_add_router
|
||||
|
|
@ -270,10 +270,6 @@ app.include_router(get_responses_router(), prefix="/api/v1/responses", tags=["re
|
|||
|
||||
app.include_router(get_sync_router(), prefix="/api/v1/sync", tags=["sync"])
|
||||
|
||||
codegraph_routes = get_code_pipeline_router()
|
||||
if codegraph_routes:
|
||||
app.include_router(codegraph_routes, prefix="/api/v1/code-pipeline", tags=["code-pipeline"])
|
||||
|
||||
app.include_router(
|
||||
get_users_router(),
|
||||
prefix="/api/v1/users",
|
||||
|
|
|
|||
|
|
@ -1,119 +0,0 @@
|
|||
import os
|
||||
import pathlib
|
||||
import asyncio
|
||||
from typing import Optional
|
||||
from cognee.shared.logging_utils import get_logger, setup_logging
|
||||
from cognee.modules.observability.get_observe import get_observe
|
||||
|
||||
from cognee.api.v1.search import SearchType, search
|
||||
from cognee.api.v1.visualize.visualize import visualize_graph
|
||||
from cognee.modules.cognify.config import get_cognify_config
|
||||
from cognee.modules.pipelines import run_tasks
|
||||
from cognee.modules.pipelines.tasks.task import Task
|
||||
from cognee.modules.users.methods import get_default_user
|
||||
from cognee.shared.data_models import KnowledgeGraph
|
||||
from cognee.modules.data.methods import create_dataset
|
||||
from cognee.tasks.documents import classify_documents, extract_chunks_from_documents
|
||||
from cognee.tasks.graph import extract_graph_from_data
|
||||
from cognee.tasks.ingestion import ingest_data
|
||||
from cognee.tasks.repo_processor import get_non_py_files, get_repo_file_dependencies
|
||||
|
||||
from cognee.tasks.storage import add_data_points
|
||||
from cognee.tasks.summarization import summarize_text
|
||||
from cognee.infrastructure.llm import get_max_chunk_tokens
|
||||
from cognee.infrastructure.databases.relational import get_relational_engine
|
||||
|
||||
observe = get_observe()
|
||||
|
||||
logger = get_logger("code_graph_pipeline")
|
||||
|
||||
|
||||
@observe
|
||||
async def run_code_graph_pipeline(
|
||||
repo_path,
|
||||
include_docs=False,
|
||||
excluded_paths: Optional[list[str]] = None,
|
||||
supported_languages: Optional[list[str]] = None,
|
||||
):
|
||||
import cognee
|
||||
from cognee.low_level import setup
|
||||
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
await setup()
|
||||
|
||||
cognee_config = get_cognify_config()
|
||||
user = await get_default_user()
|
||||
detailed_extraction = True
|
||||
|
||||
tasks = [
|
||||
Task(
|
||||
get_repo_file_dependencies,
|
||||
detailed_extraction=detailed_extraction,
|
||||
supported_languages=supported_languages,
|
||||
excluded_paths=excluded_paths,
|
||||
),
|
||||
# Task(summarize_code, task_config={"batch_size": 500}), # This task takes a long time to complete
|
||||
Task(add_data_points, task_config={"batch_size": 30}),
|
||||
]
|
||||
|
||||
if include_docs:
|
||||
# This tasks take a long time to complete
|
||||
non_code_tasks = [
|
||||
Task(get_non_py_files, task_config={"batch_size": 50}),
|
||||
Task(ingest_data, dataset_name="repo_docs", user=user),
|
||||
Task(classify_documents),
|
||||
Task(extract_chunks_from_documents, max_chunk_size=get_max_chunk_tokens()),
|
||||
Task(
|
||||
extract_graph_from_data,
|
||||
graph_model=KnowledgeGraph,
|
||||
task_config={"batch_size": 50},
|
||||
),
|
||||
Task(
|
||||
summarize_text,
|
||||
summarization_model=cognee_config.summarization_model,
|
||||
task_config={"batch_size": 50},
|
||||
),
|
||||
]
|
||||
|
||||
dataset_name = "codebase"
|
||||
|
||||
# Save dataset to database
|
||||
db_engine = get_relational_engine()
|
||||
async with db_engine.get_async_session() as session:
|
||||
dataset = await create_dataset(dataset_name, user, session)
|
||||
|
||||
if include_docs:
|
||||
non_code_pipeline_run = run_tasks(
|
||||
non_code_tasks, dataset.id, repo_path, user, "cognify_pipeline"
|
||||
)
|
||||
async for run_status in non_code_pipeline_run:
|
||||
yield run_status
|
||||
|
||||
async for run_status in run_tasks(
|
||||
tasks, dataset.id, repo_path, user, "cognify_code_pipeline", incremental_loading=False
|
||||
):
|
||||
yield run_status
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
async def main():
|
||||
async for run_status in run_code_graph_pipeline("REPO_PATH"):
|
||||
print(f"{run_status.pipeline_run_id}: {run_status.status}")
|
||||
|
||||
file_path = os.path.join(
|
||||
pathlib.Path(__file__).parent, ".artifacts", "graph_visualization.html"
|
||||
)
|
||||
await visualize_graph(file_path)
|
||||
|
||||
search_results = await search(
|
||||
query_type=SearchType.CODE,
|
||||
query_text="How is Relationship weight calculated?",
|
||||
)
|
||||
|
||||
for file in search_results:
|
||||
print(file["name"])
|
||||
|
||||
logger = setup_logging(name="code_graph_pipeline")
|
||||
asyncio.run(main())
|
||||
|
|
@ -1,2 +1 @@
|
|||
from .get_cognify_router import get_cognify_router
|
||||
from .get_code_pipeline_router import get_code_pipeline_router
|
||||
|
|
|
|||
|
|
@ -1,90 +0,0 @@
|
|||
import json
|
||||
from cognee.shared.logging_utils import get_logger
|
||||
from fastapi import APIRouter
|
||||
from fastapi.responses import JSONResponse
|
||||
from cognee.api.DTO import InDTO
|
||||
from cognee.modules.retrieval.code_retriever import CodeRetriever
|
||||
from cognee.modules.storage.utils import JSONEncoder
|
||||
|
||||
|
||||
logger = get_logger()
|
||||
|
||||
|
||||
class CodePipelineIndexPayloadDTO(InDTO):
|
||||
repo_path: str
|
||||
include_docs: bool = False
|
||||
|
||||
|
||||
class CodePipelineRetrievePayloadDTO(InDTO):
|
||||
query: str
|
||||
full_input: str
|
||||
|
||||
|
||||
def get_code_pipeline_router() -> APIRouter:
|
||||
try:
|
||||
import cognee.api.v1.cognify.code_graph_pipeline
|
||||
except ModuleNotFoundError:
|
||||
logger.error("codegraph dependencies not found. Skipping codegraph API routes.")
|
||||
return None
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
@router.post("/index", response_model=None)
|
||||
async def code_pipeline_index(payload: CodePipelineIndexPayloadDTO):
|
||||
"""
|
||||
Run indexation on a code repository.
|
||||
|
||||
This endpoint processes a code repository to create a knowledge graph
|
||||
of the codebase structure, dependencies, and relationships.
|
||||
|
||||
## Request Parameters
|
||||
- **repo_path** (str): Path to the code repository
|
||||
- **include_docs** (bool): Whether to include documentation files (default: false)
|
||||
|
||||
## Response
|
||||
No content returned. Processing results are logged.
|
||||
|
||||
## Error Codes
|
||||
- **409 Conflict**: Error during indexation process
|
||||
"""
|
||||
from cognee.api.v1.cognify.code_graph_pipeline import run_code_graph_pipeline
|
||||
|
||||
try:
|
||||
async for result in run_code_graph_pipeline(payload.repo_path, payload.include_docs):
|
||||
logger.info(result)
|
||||
except Exception as error:
|
||||
return JSONResponse(status_code=409, content={"error": str(error)})
|
||||
|
||||
@router.post("/retrieve", response_model=list[dict])
|
||||
async def code_pipeline_retrieve(payload: CodePipelineRetrievePayloadDTO):
|
||||
"""
|
||||
Retrieve context from the code knowledge graph.
|
||||
|
||||
This endpoint searches the indexed code repository to find relevant
|
||||
context based on the provided query.
|
||||
|
||||
## Request Parameters
|
||||
- **query** (str): Search query for code context
|
||||
- **full_input** (str): Full input text for processing
|
||||
|
||||
## Response
|
||||
Returns a list of relevant code files and context as JSON.
|
||||
|
||||
## Error Codes
|
||||
- **409 Conflict**: Error during retrieval process
|
||||
"""
|
||||
try:
|
||||
query = (
|
||||
payload.full_input.replace("cognee ", "")
|
||||
if payload.full_input.startswith("cognee ")
|
||||
else payload.full_input
|
||||
)
|
||||
|
||||
retriever = CodeRetriever()
|
||||
retrieved_files = await retriever.get_context(query)
|
||||
|
||||
return json.dumps(retrieved_files, cls=JSONEncoder)
|
||||
except Exception as error:
|
||||
return JSONResponse(status_code=409, content={"error": str(error)})
|
||||
|
||||
return router
|
||||
|
|
@ -2,3 +2,4 @@ from .tasks.task import Task
|
|||
from .operations.run_tasks import run_tasks
|
||||
from .operations.run_parallel import run_tasks_parallel
|
||||
from .operations.pipeline import run_pipeline
|
||||
from .custom_pipeline_interface import CustomPipelineInterface
|
||||
|
|
|
|||
12
cognee/modules/pipelines/custom_pipeline_interface.py
Normal file
12
cognee/modules/pipelines/custom_pipeline_interface.py
Normal file
|
|
@ -0,0 +1,12 @@
|
|||
from typing import Protocol, Any
|
||||
from abc import abstractmethod
|
||||
|
||||
|
||||
class CustomPipelineInterface(Protocol):
|
||||
"""
|
||||
Defines an interface for creating and running a custom pipeline.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
async def run_pipeline(self) -> Any:
|
||||
raise NotImplementedError
|
||||
|
|
@ -1,58 +0,0 @@
|
|||
import argparse
|
||||
import asyncio
|
||||
import cognee
|
||||
from cognee import SearchType
|
||||
from cognee.shared.logging_utils import setup_logging, ERROR
|
||||
|
||||
from cognee.api.v1.cognify.code_graph_pipeline import run_code_graph_pipeline
|
||||
|
||||
|
||||
async def main(repo_path, include_docs):
|
||||
run_status = False
|
||||
async for run_status in run_code_graph_pipeline(repo_path, include_docs=include_docs):
|
||||
run_status = run_status
|
||||
|
||||
# Test CODE search
|
||||
search_results = await cognee.search(query_type=SearchType.CODE, query_text="test")
|
||||
assert len(search_results) != 0, "The search results list is empty."
|
||||
print("\n\nSearch results are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
return run_status
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--repo_path", type=str, required=True, help="Path to the repository")
|
||||
parser.add_argument(
|
||||
"--include_docs",
|
||||
type=lambda x: x.lower() in ("true", "1"),
|
||||
default=False,
|
||||
help="Whether or not to process non-code files",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--time",
|
||||
type=lambda x: x.lower() in ("true", "1"),
|
||||
default=True,
|
||||
help="Whether or not to time the pipeline run",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logger = setup_logging(log_level=ERROR)
|
||||
|
||||
args = parse_args()
|
||||
|
||||
if args.time:
|
||||
import time
|
||||
|
||||
start_time = time.time()
|
||||
asyncio.run(main(args.repo_path, args.include_docs))
|
||||
end_time = time.time()
|
||||
print("\n" + "=" * 50)
|
||||
print(f"Pipeline Execution Time: {end_time - start_time:.2f} seconds")
|
||||
print("=" * 50 + "\n")
|
||||
else:
|
||||
asyncio.run(main(args.repo_path, args.include_docs))
|
||||
Loading…
Add table
Reference in a new issue