running swebench evaluation as subprocess

This commit is contained in:
Rita Aleksziev 2024-11-18 15:02:16 +01:00
parent ed08cdb9f9
commit 98e3445c2c
3 changed files with 190 additions and 92 deletions

View file

@ -1,3 +1,8 @@
from cognee.infrastructure.databases.vector import get_vector_engine
from cognee.base_config import get_base_config
import os
import logging
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from typing import List, Dict, Type
from swebench.harness.utils import load_swebench_dataset
from deepeval.dataset import EvaluationDataset
@ -21,8 +26,6 @@ def convert_swe_to_deepeval(swe_dataset: List[Dict]):
expected_output = datum["patch"]
context = [datum["text"]]
# retrieval_context = datum.get(retrieval_context_key_name)
# tools_called = datum.get(tools_called_key_name)
# expected_tools = json_obj.get(expected_tools_key_name)
deepeval_dataset.add_test_case(
LLMTestCase(
@ -31,33 +34,32 @@ def convert_swe_to_deepeval(swe_dataset: List[Dict]):
expected_output=expected_output,
context=context,
# retrieval_context=retrieval_context,
# tools_called=tools_called,
# expected_tools=expected_tools,
)
)
return deepeval_dataset
from cognee.infrastructure.llm.get_llm_client import get_llm_client
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
swe_dataset = load_swebench_dataset(
'princeton-nlp/SWE-bench_bm25_13K', split='test')
deepeval_dataset = convert_swe_to_deepeval(swe_dataset)
import logging
logger = logging.getLogger(__name__)
class AnswerModel(BaseModel):
response:str
def get_answer_base(content: str, context:str, response_model: Type[BaseModel]):
class AnswerModel(BaseModel):
response: str
def get_answer_base(content: str, context: str, response_model: Type[BaseModel]):
llm_client = get_llm_client()
system_prompt = "THIS IS YOUR CONTEXT:" + str(context)
return llm_client.create_structured_output(content, system_prompt, response_model)
return llm_client.create_structured_output(content, system_prompt, response_model)
def get_answer(content: str,context, model: Type[BaseModel]= AnswerModel):
def get_answer(content: str, context, model: Type[BaseModel] = AnswerModel):
try:
return (get_answer_base(
@ -66,9 +68,11 @@ def get_answer(content: str,context, model: Type[BaseModel]= AnswerModel):
model
))
except Exception as error:
logger.error("Error extracting cognitive layers from content: %s", error, exc_info = True)
logger.error(
"Error extracting cognitive layers from content: %s", error, exc_info=True)
raise error
async def run_cognify_base_rag():
from cognee.api.v1.add import add
from cognee.api.v1.prune import prune
@ -82,11 +86,7 @@ async def run_cognify_base_rag():
pass
import os
from cognee.base_config import get_base_config
from cognee.infrastructure.databases.vector import get_vector_engine
async def cognify_search_base_rag(content:str, context:str):
async def cognify_search_base_rag(content: str, context: str):
base_config = get_base_config()
cognee_directory_path = os.path.abspath(".cognee_system")
@ -99,7 +99,8 @@ async def cognify_search_base_rag(content:str, context:str):
print("results", return_)
return return_
async def cognify_search_graph(content:str, context:str):
async def cognify_search_graph(content: str, context: str):
from cognee.api.v1.search import search, SearchType
params = {'query': 'Donald Trump'}
@ -114,7 +115,8 @@ def convert_goldens_to_test_cases(test_cases_raw: List[LLMTestCase]) -> List[LLM
test_case = LLMTestCase(
input=case.input,
# Generate actual output using the 'input' and 'additional_metadata'
actual_output= str(get_answer(case.input, case.context).model_dump()['response']),
actual_output=str(get_answer(
case.input, case.context).model_dump()['response']),
expected_output=case.expected_output,
context=case.context,
retrieval_context=["retrieval_context"],
@ -122,6 +124,7 @@ def convert_goldens_to_test_cases(test_cases_raw: List[LLMTestCase]) -> List[LLM
test_cases.append(test_case)
return test_cases
def convert_swe_to_deepeval_testcases(swe_dataset: List[Dict]):
deepeval_dataset = EvaluationDataset()
for datum in swe_dataset[:4]:
@ -135,7 +138,8 @@ def convert_swe_to_deepeval_testcases(swe_dataset: List[Dict]):
deepeval_dataset.add_test_case(
LLMTestCase(
input=input,
actual_output= str(get_answer(input, context).model_dump()['response']),
actual_output=str(get_answer(
input, context).model_dump()['response']),
expected_output=expected_output,
context=context,
# retrieval_context=retrieval_context,
@ -145,9 +149,11 @@ def convert_swe_to_deepeval_testcases(swe_dataset: List[Dict]):
)
return deepeval_dataset
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
swe_dataset = load_swebench_dataset(
'princeton-nlp/SWE-bench_bm25_13K', split='test')
test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
if __name__ == "__main__":
import asyncio
@ -159,9 +165,10 @@ if __name__ == "__main__":
asyncio.run(main())
# run_cognify_base_rag_and_search()
# # Data preprocessing before setting the dataset test cases
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
swe_dataset = load_swebench_dataset(
'princeton-nlp/SWE-bench_bm25_13K', split='test')
test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
from deepeval.metrics import HallucinationMetric
metric = HallucinationMetric()
evalresult = test_dataset.evaluate([metric])
pass
pass

View file

@ -1,38 +1,38 @@
from swebench.harness.utils import load_swebench_dataset
from swebench.harness.run_evaluation import get_dataset_from_preds
from swebench.harness.run_evaluation import run_instances
from swebench.harness.test_spec import make_test_spec, TestSpec
import json
import subprocess
from pathlib import Path
from swebench.harness.utils import load_swebench_dataset
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
from evals.eval_utils import download_instances
import cognee
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
from cognee.api.v1.search import SearchType
from pathlib import Path
from cognee.infrastructure.databases.graph import get_graph_engine
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from evals.eval_utils import download_instances
async def cognee_and_llm(dataset, search_type = SearchType.CHUNKS):
async def cognee_and_llm(dataset, search_type=SearchType.CHUNKS):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata = True)
await cognee.prune.prune_system(metadata=True)
dataset_name = "SWE_test_data"
code_text = dataset[0]["text"][:100000]
code_text = dataset[0]["text"]
await cognee.add([code_text], dataset_name)
await code_graph_pipeline([dataset_name])
graph_engine = await get_graph_engine()
with open(graph_engine.filename, "r") as f:
graph_str = f.read()
graph_str = f.read()
problem_statement = dataset[0]['problem_statement']
instructions = (
f"I need you to solve this issue by looking at the provided knowledge graph and by "
+ f"generating a single patch file that I can apply directly to this repository "
+ f"using git apply. Please respond with a single patch "
+ f"file in the following format."
"I need you to solve this issue by looking at the provided knowledge graph and by "
+ "generating a single patch file that I can apply directly to this repository "
+ "using git apply. Please respond with a single patch "
+ "file in the following format."
)
prompt = "\n".join([
instructions,
"<patch>",
@ -41,28 +41,29 @@ async def cognee_and_llm(dataset, search_type = SearchType.CHUNKS):
"This is the knowledge graph:",
graph_str
])
llm_client = get_llm_client()
answer_prediction = llm_client.create_structured_output(
text_input = problem_statement,
system_prompt = prompt,
response_model = str,
)
text_input=problem_statement,
system_prompt=prompt,
response_model=str,
)
return answer_prediction
async def llm_on_preprocessed_data(dataset):
problem_statement = dataset[0]['problem_statement']
prompt = dataset[0]["text"]
llm_client = get_llm_client()
answer_prediction = llm_client.create_structured_output(
text_input = problem_statement,
system_prompt = prompt, # TODO check if this is correct
response_model = str,
)
text_input=problem_statement,
system_prompt=prompt,
response_model=str,
)
return answer_prediction
async def get_preds(dataset, with_cognee=True):
if with_cognee:
text_output = await cognee_and_llm(dataset)
@ -70,46 +71,21 @@ async def get_preds(dataset, with_cognee=True):
else:
text_output = await llm_on_preprocessed_data(dataset)
model_name = "without_cognee"
preds = {dataset[0]["instance_id"]:
{"instance_id": dataset[0]["instance_id"],
"model_patch": text_output,
"model_name_or_path": model_name}}
dataset_name = 'princeton-nlp/SWE-bench' if with_cognee else 'princeton-nlp/SWE-bench_bm25_13K'
preds_dataset = get_dataset_from_preds(dataset_name,
"test",
[dataset[0]["instance_id"]],
preds,
model_name)
return preds, preds_dataset
async def evaluate(test_specs: list[TestSpec],
preds: dict,
):
for test_spec in test_specs:
pred = preds[test_spec.instance_id]
log_dir = Path("logs")
log_dir.mkdir(parents=True, exist_ok=True)
preds = [{"instance_id": dataset[0]["instance_id"],
"model_patch": text_output,
"model_name_or_path": model_name}]
patch_file = Path(log_dir / "patch.diff")
patch_file.write_text(pred["model_patch"] or "")
for command in test_spec.repo_script_list:
if "/testbed" in command:
command = command.replace("/testbed", "./testbed")
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
print(result)
subprocess.run("git apply --allow-empty -v logs/patch.diff", shell=True, capture_output=True, text=True)
return preds
async def main():
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench', split='test')
swe_dataset_preprocessed = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
test_data = swe_dataset[:1]
test_data_preprocessed = swe_dataset_preprocessed[:1]
swe_dataset = load_swebench_dataset(
'princeton-nlp/SWE-bench', split='test')
swe_dataset_preprocessed = load_swebench_dataset(
'princeton-nlp/SWE-bench_bm25_13K', split='test')
test_data = swe_dataset[:1]
test_data_preprocessed = swe_dataset_preprocessed[:1]
assert test_data[0]["instance_id"] == test_data_preprocessed[0]["instance_id"]
filepath = Path("SWE-bench_testsample")
if filepath.exists():
@ -117,11 +93,19 @@ async def main():
dataset = Dataset.load_from_disk(filepath)
else:
dataset = download_instances(test_data, filepath)
cognee_preds, cognee_preds_dataset = await get_preds(dataset, with_cognee=True)
cognee_preds = await get_preds(dataset, with_cognee=True)
# nocognee_preds = await get_preds(dataset, with_cognee=False)
test_specs = list(map(make_test_spec, test_data))
results = await evaluate(test_specs, cognee_preds)
with open("withcognee.json", "w") as file:
json.dump(cognee_preds, file)
subprocess.run(["python", "-m", "swebench.harness.run_evaluation",
"--dataset_name", 'princeton-nlp/SWE-bench',
"--split", "test",
"--predictions_path", "withcognee.json",
"--max_workers", "1",
"--instance_ids", test_data[0]["instance_id"],
"--run_id", "with_cognee"])
if __name__ == "__main__":
import asyncio

107
evals/eval_utils.py Normal file
View file

@ -0,0 +1,107 @@
import json
import logging
import os
import traceback
from copy import deepcopy
from pathlib import Path
from tempfile import TemporaryDirectory
import unidiff
from datasets import Dataset
from swebench.inference.make_datasets.create_instance import make_code_text
from swebench.inference.make_datasets.utils import (AutoContextManager,
ingest_directory_contents)
from tqdm.auto import tqdm
def ingest_files(filenames):
files_dict = dict()
for filename in filenames:
with open(filename) as f:
content = f.read()
files_dict[filename] = content
return files_dict
def ingest_repos(input_instances):
orig_dir = os.getcwd()
with TemporaryDirectory(
dir="/scratch" if os.path.exists("/scratch") else "/tmp"
) as root_dir:
for instance in tqdm(
input_instances.values(),
total=len(input_instances),
desc="Downloading repos on specific commits",
):
try:
with AutoContextManager(
instance, root_dir
) as cm:
readmes = cm.get_readme_files()
instance["readmes"] = ingest_files(readmes)
instance["file_contents"] = ingest_directory_contents(
cm.repo_path
)
finally:
# if AutoContextManager fails to exit properly future exits will return the wrong directory
os.chdir(orig_dir)
return input_instances
def extract_fields(instance):
readmes_text = make_code_text(instance["readmes"])
code_text = make_code_text(
instance["file_contents"], add_line_numbers=False)
text_inputs = "\n".join([readmes_text, code_text])
text_inputs = text_inputs.strip() + "\n\n"
# text_inputs = code_text
patch = "\n".join([f"<patch>", instance["patch"], "</patch>"])
return {**instance, "text": text_inputs, "patch": patch}
def create_dataset(input_instances):
columns = [
"instance_id",
"text",
"repo",
"base_commit",
"problem_statement",
"hints_text",
"created_at",
"patch",
"test_patch",
"version",
"FAIL_TO_PASS",
"PASS_TO_PASS",
"environment_setup_commit",
]
data_table = {key: list() for key in columns}
for instance in input_instances.values():
datum = extract_fields(instance)
for key in columns:
data_table[key].append(datum[key] if key in datum else "")
dataset = Dataset.from_dict(data_table)
return dataset
def download_instances(
input_data,
path=Path("SWE-bench_testsample"),
verbose=False,
):
"""Downloads code from github.
Args:
- input_data: dictionary with unprocessed input instances.
- verbose: set ContextManager verbose to True
"""
input_instances = {x["instance_id"]: x for x in input_data}
input_instances_copy = deepcopy(input_instances)
input_instances_with_text = ingest_repos(input_instances_copy)
dataset = create_dataset(input_instances_with_text)
dataset.save_to_disk(path)
return dataset