running swebench evaluation as subprocess
This commit is contained in:
parent
ed08cdb9f9
commit
98e3445c2c
3 changed files with 190 additions and 92 deletions
|
|
@ -1,3 +1,8 @@
|
|||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
from cognee.base_config import get_base_config
|
||||
import os
|
||||
import logging
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from typing import List, Dict, Type
|
||||
from swebench.harness.utils import load_swebench_dataset
|
||||
from deepeval.dataset import EvaluationDataset
|
||||
|
|
@ -21,8 +26,6 @@ def convert_swe_to_deepeval(swe_dataset: List[Dict]):
|
|||
expected_output = datum["patch"]
|
||||
context = [datum["text"]]
|
||||
# retrieval_context = datum.get(retrieval_context_key_name)
|
||||
# tools_called = datum.get(tools_called_key_name)
|
||||
# expected_tools = json_obj.get(expected_tools_key_name)
|
||||
|
||||
deepeval_dataset.add_test_case(
|
||||
LLMTestCase(
|
||||
|
|
@ -31,33 +34,32 @@ def convert_swe_to_deepeval(swe_dataset: List[Dict]):
|
|||
expected_output=expected_output,
|
||||
context=context,
|
||||
# retrieval_context=retrieval_context,
|
||||
# tools_called=tools_called,
|
||||
# expected_tools=expected_tools,
|
||||
)
|
||||
)
|
||||
return deepeval_dataset
|
||||
|
||||
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
|
||||
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
|
||||
swe_dataset = load_swebench_dataset(
|
||||
'princeton-nlp/SWE-bench_bm25_13K', split='test')
|
||||
deepeval_dataset = convert_swe_to_deepeval(swe_dataset)
|
||||
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class AnswerModel(BaseModel):
|
||||
response:str
|
||||
|
||||
def get_answer_base(content: str, context:str, response_model: Type[BaseModel]):
|
||||
class AnswerModel(BaseModel):
|
||||
response: str
|
||||
|
||||
|
||||
def get_answer_base(content: str, context: str, response_model: Type[BaseModel]):
|
||||
llm_client = get_llm_client()
|
||||
|
||||
system_prompt = "THIS IS YOUR CONTEXT:" + str(context)
|
||||
|
||||
return llm_client.create_structured_output(content, system_prompt, response_model)
|
||||
return llm_client.create_structured_output(content, system_prompt, response_model)
|
||||
|
||||
def get_answer(content: str,context, model: Type[BaseModel]= AnswerModel):
|
||||
|
||||
def get_answer(content: str, context, model: Type[BaseModel] = AnswerModel):
|
||||
|
||||
try:
|
||||
return (get_answer_base(
|
||||
|
|
@ -66,9 +68,11 @@ def get_answer(content: str,context, model: Type[BaseModel]= AnswerModel):
|
|||
model
|
||||
))
|
||||
except Exception as error:
|
||||
logger.error("Error extracting cognitive layers from content: %s", error, exc_info = True)
|
||||
logger.error(
|
||||
"Error extracting cognitive layers from content: %s", error, exc_info=True)
|
||||
raise error
|
||||
|
||||
|
||||
async def run_cognify_base_rag():
|
||||
from cognee.api.v1.add import add
|
||||
from cognee.api.v1.prune import prune
|
||||
|
|
@ -82,11 +86,7 @@ async def run_cognify_base_rag():
|
|||
pass
|
||||
|
||||
|
||||
import os
|
||||
from cognee.base_config import get_base_config
|
||||
from cognee.infrastructure.databases.vector import get_vector_engine
|
||||
|
||||
async def cognify_search_base_rag(content:str, context:str):
|
||||
async def cognify_search_base_rag(content: str, context: str):
|
||||
base_config = get_base_config()
|
||||
|
||||
cognee_directory_path = os.path.abspath(".cognee_system")
|
||||
|
|
@ -99,7 +99,8 @@ async def cognify_search_base_rag(content:str, context:str):
|
|||
print("results", return_)
|
||||
return return_
|
||||
|
||||
async def cognify_search_graph(content:str, context:str):
|
||||
|
||||
async def cognify_search_graph(content: str, context: str):
|
||||
from cognee.api.v1.search import search, SearchType
|
||||
params = {'query': 'Donald Trump'}
|
||||
|
||||
|
|
@ -114,7 +115,8 @@ def convert_goldens_to_test_cases(test_cases_raw: List[LLMTestCase]) -> List[LLM
|
|||
test_case = LLMTestCase(
|
||||
input=case.input,
|
||||
# Generate actual output using the 'input' and 'additional_metadata'
|
||||
actual_output= str(get_answer(case.input, case.context).model_dump()['response']),
|
||||
actual_output=str(get_answer(
|
||||
case.input, case.context).model_dump()['response']),
|
||||
expected_output=case.expected_output,
|
||||
context=case.context,
|
||||
retrieval_context=["retrieval_context"],
|
||||
|
|
@ -122,6 +124,7 @@ def convert_goldens_to_test_cases(test_cases_raw: List[LLMTestCase]) -> List[LLM
|
|||
test_cases.append(test_case)
|
||||
return test_cases
|
||||
|
||||
|
||||
def convert_swe_to_deepeval_testcases(swe_dataset: List[Dict]):
|
||||
deepeval_dataset = EvaluationDataset()
|
||||
for datum in swe_dataset[:4]:
|
||||
|
|
@ -135,7 +138,8 @@ def convert_swe_to_deepeval_testcases(swe_dataset: List[Dict]):
|
|||
deepeval_dataset.add_test_case(
|
||||
LLMTestCase(
|
||||
input=input,
|
||||
actual_output= str(get_answer(input, context).model_dump()['response']),
|
||||
actual_output=str(get_answer(
|
||||
input, context).model_dump()['response']),
|
||||
expected_output=expected_output,
|
||||
context=context,
|
||||
# retrieval_context=retrieval_context,
|
||||
|
|
@ -145,9 +149,11 @@ def convert_swe_to_deepeval_testcases(swe_dataset: List[Dict]):
|
|||
)
|
||||
return deepeval_dataset
|
||||
|
||||
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
|
||||
|
||||
swe_dataset = load_swebench_dataset(
|
||||
'princeton-nlp/SWE-bench_bm25_13K', split='test')
|
||||
test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
import asyncio
|
||||
|
|
@ -159,9 +165,10 @@ if __name__ == "__main__":
|
|||
asyncio.run(main())
|
||||
# run_cognify_base_rag_and_search()
|
||||
# # Data preprocessing before setting the dataset test cases
|
||||
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
|
||||
swe_dataset = load_swebench_dataset(
|
||||
'princeton-nlp/SWE-bench_bm25_13K', split='test')
|
||||
test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
|
||||
from deepeval.metrics import HallucinationMetric
|
||||
metric = HallucinationMetric()
|
||||
evalresult = test_dataset.evaluate([metric])
|
||||
pass
|
||||
pass
|
||||
|
|
|
|||
|
|
@ -1,38 +1,38 @@
|
|||
from swebench.harness.utils import load_swebench_dataset
|
||||
from swebench.harness.run_evaluation import get_dataset_from_preds
|
||||
from swebench.harness.run_evaluation import run_instances
|
||||
from swebench.harness.test_spec import make_test_spec, TestSpec
|
||||
|
||||
import json
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
from swebench.harness.utils import load_swebench_dataset
|
||||
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
|
||||
from evals.eval_utils import download_instances
|
||||
|
||||
import cognee
|
||||
from cognee.api.v1.cognify.code_graph_pipeline import code_graph_pipeline
|
||||
from cognee.api.v1.search import SearchType
|
||||
from pathlib import Path
|
||||
from cognee.infrastructure.databases.graph import get_graph_engine
|
||||
from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
||||
from evals.eval_utils import download_instances
|
||||
|
||||
async def cognee_and_llm(dataset, search_type = SearchType.CHUNKS):
|
||||
|
||||
async def cognee_and_llm(dataset, search_type=SearchType.CHUNKS):
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata = True)
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
dataset_name = "SWE_test_data"
|
||||
code_text = dataset[0]["text"][:100000]
|
||||
code_text = dataset[0]["text"]
|
||||
await cognee.add([code_text], dataset_name)
|
||||
await code_graph_pipeline([dataset_name])
|
||||
graph_engine = await get_graph_engine()
|
||||
with open(graph_engine.filename, "r") as f:
|
||||
graph_str = f.read()
|
||||
|
||||
graph_str = f.read()
|
||||
|
||||
problem_statement = dataset[0]['problem_statement']
|
||||
instructions = (
|
||||
f"I need you to solve this issue by looking at the provided knowledge graph and by "
|
||||
+ f"generating a single patch file that I can apply directly to this repository "
|
||||
+ f"using git apply. Please respond with a single patch "
|
||||
+ f"file in the following format."
|
||||
"I need you to solve this issue by looking at the provided knowledge graph and by "
|
||||
+ "generating a single patch file that I can apply directly to this repository "
|
||||
+ "using git apply. Please respond with a single patch "
|
||||
+ "file in the following format."
|
||||
)
|
||||
|
||||
|
||||
prompt = "\n".join([
|
||||
instructions,
|
||||
"<patch>",
|
||||
|
|
@ -41,28 +41,29 @@ async def cognee_and_llm(dataset, search_type = SearchType.CHUNKS):
|
|||
"This is the knowledge graph:",
|
||||
graph_str
|
||||
])
|
||||
|
||||
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = llm_client.create_structured_output(
|
||||
text_input = problem_statement,
|
||||
system_prompt = prompt,
|
||||
response_model = str,
|
||||
)
|
||||
text_input=problem_statement,
|
||||
system_prompt=prompt,
|
||||
response_model=str,
|
||||
)
|
||||
return answer_prediction
|
||||
|
||||
|
||||
async def llm_on_preprocessed_data(dataset):
|
||||
problem_statement = dataset[0]['problem_statement']
|
||||
prompt = dataset[0]["text"]
|
||||
|
||||
|
||||
llm_client = get_llm_client()
|
||||
answer_prediction = llm_client.create_structured_output(
|
||||
text_input = problem_statement,
|
||||
system_prompt = prompt, # TODO check if this is correct
|
||||
response_model = str,
|
||||
)
|
||||
text_input=problem_statement,
|
||||
system_prompt=prompt,
|
||||
response_model=str,
|
||||
)
|
||||
return answer_prediction
|
||||
|
||||
|
||||
async def get_preds(dataset, with_cognee=True):
|
||||
if with_cognee:
|
||||
text_output = await cognee_and_llm(dataset)
|
||||
|
|
@ -70,46 +71,21 @@ async def get_preds(dataset, with_cognee=True):
|
|||
else:
|
||||
text_output = await llm_on_preprocessed_data(dataset)
|
||||
model_name = "without_cognee"
|
||||
|
||||
preds = {dataset[0]["instance_id"]:
|
||||
{"instance_id": dataset[0]["instance_id"],
|
||||
"model_patch": text_output,
|
||||
"model_name_or_path": model_name}}
|
||||
|
||||
dataset_name = 'princeton-nlp/SWE-bench' if with_cognee else 'princeton-nlp/SWE-bench_bm25_13K'
|
||||
preds_dataset = get_dataset_from_preds(dataset_name,
|
||||
"test",
|
||||
[dataset[0]["instance_id"]],
|
||||
preds,
|
||||
model_name)
|
||||
|
||||
return preds, preds_dataset
|
||||
|
||||
async def evaluate(test_specs: list[TestSpec],
|
||||
preds: dict,
|
||||
):
|
||||
for test_spec in test_specs:
|
||||
pred = preds[test_spec.instance_id]
|
||||
log_dir = Path("logs")
|
||||
log_dir.mkdir(parents=True, exist_ok=True)
|
||||
preds = [{"instance_id": dataset[0]["instance_id"],
|
||||
"model_patch": text_output,
|
||||
"model_name_or_path": model_name}]
|
||||
|
||||
patch_file = Path(log_dir / "patch.diff")
|
||||
patch_file.write_text(pred["model_patch"] or "")
|
||||
for command in test_spec.repo_script_list:
|
||||
if "/testbed" in command:
|
||||
command = command.replace("/testbed", "./testbed")
|
||||
result = subprocess.run(command, shell=True, check=True, capture_output=True, text=True)
|
||||
print(result)
|
||||
|
||||
subprocess.run("git apply --allow-empty -v logs/patch.diff", shell=True, capture_output=True, text=True)
|
||||
return preds
|
||||
|
||||
|
||||
|
||||
async def main():
|
||||
swe_dataset = load_swebench_dataset('princeton-nlp/SWE-bench', split='test')
|
||||
swe_dataset_preprocessed = load_swebench_dataset('princeton-nlp/SWE-bench_bm25_13K', split='test')
|
||||
test_data = swe_dataset[:1]
|
||||
test_data_preprocessed = swe_dataset_preprocessed[:1]
|
||||
swe_dataset = load_swebench_dataset(
|
||||
'princeton-nlp/SWE-bench', split='test')
|
||||
swe_dataset_preprocessed = load_swebench_dataset(
|
||||
'princeton-nlp/SWE-bench_bm25_13K', split='test')
|
||||
test_data = swe_dataset[:1]
|
||||
test_data_preprocessed = swe_dataset_preprocessed[:1]
|
||||
assert test_data[0]["instance_id"] == test_data_preprocessed[0]["instance_id"]
|
||||
filepath = Path("SWE-bench_testsample")
|
||||
if filepath.exists():
|
||||
|
|
@ -117,11 +93,19 @@ async def main():
|
|||
dataset = Dataset.load_from_disk(filepath)
|
||||
else:
|
||||
dataset = download_instances(test_data, filepath)
|
||||
|
||||
cognee_preds, cognee_preds_dataset = await get_preds(dataset, with_cognee=True)
|
||||
|
||||
cognee_preds = await get_preds(dataset, with_cognee=True)
|
||||
# nocognee_preds = await get_preds(dataset, with_cognee=False)
|
||||
test_specs = list(map(make_test_spec, test_data))
|
||||
results = await evaluate(test_specs, cognee_preds)
|
||||
with open("withcognee.json", "w") as file:
|
||||
json.dump(cognee_preds, file)
|
||||
|
||||
subprocess.run(["python", "-m", "swebench.harness.run_evaluation",
|
||||
"--dataset_name", 'princeton-nlp/SWE-bench',
|
||||
"--split", "test",
|
||||
"--predictions_path", "withcognee.json",
|
||||
"--max_workers", "1",
|
||||
"--instance_ids", test_data[0]["instance_id"],
|
||||
"--run_id", "with_cognee"])
|
||||
|
||||
if __name__ == "__main__":
|
||||
import asyncio
|
||||
|
|
|
|||
107
evals/eval_utils.py
Normal file
107
evals/eval_utils.py
Normal file
|
|
@ -0,0 +1,107 @@
|
|||
import json
|
||||
import logging
|
||||
import os
|
||||
import traceback
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
from tempfile import TemporaryDirectory
|
||||
|
||||
import unidiff
|
||||
from datasets import Dataset
|
||||
from swebench.inference.make_datasets.create_instance import make_code_text
|
||||
from swebench.inference.make_datasets.utils import (AutoContextManager,
|
||||
ingest_directory_contents)
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
|
||||
def ingest_files(filenames):
|
||||
files_dict = dict()
|
||||
for filename in filenames:
|
||||
with open(filename) as f:
|
||||
content = f.read()
|
||||
files_dict[filename] = content
|
||||
return files_dict
|
||||
|
||||
|
||||
def ingest_repos(input_instances):
|
||||
orig_dir = os.getcwd()
|
||||
with TemporaryDirectory(
|
||||
dir="/scratch" if os.path.exists("/scratch") else "/tmp"
|
||||
) as root_dir:
|
||||
for instance in tqdm(
|
||||
input_instances.values(),
|
||||
total=len(input_instances),
|
||||
desc="Downloading repos on specific commits",
|
||||
):
|
||||
try:
|
||||
with AutoContextManager(
|
||||
instance, root_dir
|
||||
) as cm:
|
||||
readmes = cm.get_readme_files()
|
||||
instance["readmes"] = ingest_files(readmes)
|
||||
instance["file_contents"] = ingest_directory_contents(
|
||||
cm.repo_path
|
||||
)
|
||||
finally:
|
||||
# if AutoContextManager fails to exit properly future exits will return the wrong directory
|
||||
os.chdir(orig_dir)
|
||||
|
||||
return input_instances
|
||||
|
||||
|
||||
def extract_fields(instance):
|
||||
readmes_text = make_code_text(instance["readmes"])
|
||||
code_text = make_code_text(
|
||||
instance["file_contents"], add_line_numbers=False)
|
||||
|
||||
text_inputs = "\n".join([readmes_text, code_text])
|
||||
text_inputs = text_inputs.strip() + "\n\n"
|
||||
# text_inputs = code_text
|
||||
patch = "\n".join([f"<patch>", instance["patch"], "</patch>"])
|
||||
return {**instance, "text": text_inputs, "patch": patch}
|
||||
|
||||
|
||||
def create_dataset(input_instances):
|
||||
columns = [
|
||||
"instance_id",
|
||||
"text",
|
||||
"repo",
|
||||
"base_commit",
|
||||
"problem_statement",
|
||||
"hints_text",
|
||||
"created_at",
|
||||
"patch",
|
||||
"test_patch",
|
||||
"version",
|
||||
"FAIL_TO_PASS",
|
||||
"PASS_TO_PASS",
|
||||
"environment_setup_commit",
|
||||
]
|
||||
|
||||
data_table = {key: list() for key in columns}
|
||||
for instance in input_instances.values():
|
||||
datum = extract_fields(instance)
|
||||
for key in columns:
|
||||
data_table[key].append(datum[key] if key in datum else "")
|
||||
dataset = Dataset.from_dict(data_table)
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
def download_instances(
|
||||
input_data,
|
||||
path=Path("SWE-bench_testsample"),
|
||||
verbose=False,
|
||||
):
|
||||
"""Downloads code from github.
|
||||
|
||||
Args:
|
||||
- input_data: dictionary with unprocessed input instances.
|
||||
- verbose: set ContextManager verbose to True
|
||||
"""
|
||||
input_instances = {x["instance_id"]: x for x in input_data}
|
||||
input_instances_copy = deepcopy(input_instances)
|
||||
input_instances_with_text = ingest_repos(input_instances_copy)
|
||||
dataset = create_dataset(input_instances_with_text)
|
||||
dataset.save_to_disk(path)
|
||||
return dataset
|
||||
Loading…
Add table
Reference in a new issue