using the code graph pipeline instead of cognify
This commit is contained in:
parent
4d6229bf7e
commit
ed08cdb9f9
1 changed files with 2 additions and 2 deletions
|
|
@ -20,7 +20,7 @@ async def cognee_and_llm(dataset, search_type = SearchType.CHUNKS):
|
|||
dataset_name = "SWE_test_data"
|
||||
code_text = dataset[0]["text"][:100000]
|
||||
await cognee.add([code_text], dataset_name)
|
||||
await cognee.cognify([dataset_name])
|
||||
await code_graph_pipeline([dataset_name])
|
||||
graph_engine = await get_graph_engine()
|
||||
with open(graph_engine.filename, "r") as f:
|
||||
graph_str = f.read()
|
||||
|
|
@ -63,7 +63,7 @@ async def llm_on_preprocessed_data(dataset):
|
|||
)
|
||||
return answer_prediction
|
||||
|
||||
async def get_preds(dataset, with_cognee):
|
||||
async def get_preds(dataset, with_cognee=True):
|
||||
if with_cognee:
|
||||
text_output = await cognee_and_llm(dataset)
|
||||
model_name = "with_cognee"
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue