Code cleanup

This commit is contained in:
Rita Aleksziev 2024-11-19 13:32:35 +01:00
parent 9973afffa1
commit 838d98238a
3 changed files with 44 additions and 207 deletions

View file

@ -1,174 +0,0 @@
from cognee.infrastructure.databases.vector import get_vector_engine
from cognee.base_config import get_base_config
import os
import logging
from cognee.infrastructure.llm.get_llm_client import get_llm_client
from typing import List, Dict, Type
from swebench.harness.utils import load_swebench_dataset
from deepeval.dataset import EvaluationDataset
from deepeval.test_case import LLMTestCase
from pydantic import BaseModel
from deepeval.synthesizer import Synthesizer
# DeepEval dataset for reference
# synthesizer = Synthesizer()
# synthesizer.generate_goldens_from_docs(
# document_paths=['/app/.data/short_stories/soldiers_home.pdf'],
# include_expected_output=True
# )
def convert_swe_to_deepeval(swe_dataset: List[Dict]):
deepeval_dataset = EvaluationDataset()
for datum in swe_dataset:
input = datum["problem_statement"]
expected_output = datum["patch"]
context = [datum["text"]]
# retrieval_context = datum.get(retrieval_context_key_name)
deepeval_dataset.add_test_case(
LLMTestCase(
input=input,
actual_output=None,
expected_output=expected_output,
context=context,
# retrieval_context=retrieval_context,
)
)
return deepeval_dataset
swe_dataset = load_swebench_dataset(
'princeton-nlp/SWE-bench_bm25_13K', split='test')
deepeval_dataset = convert_swe_to_deepeval(swe_dataset)
logger = logging.getLogger(__name__)
class AnswerModel(BaseModel):
response: str
def get_answer_base(content: str, context: str, response_model: Type[BaseModel]):
llm_client = get_llm_client()
system_prompt = "THIS IS YOUR CONTEXT:" + str(context)
return llm_client.create_structured_output(content, system_prompt, response_model)
def get_answer(content: str, context, model: Type[BaseModel] = AnswerModel):
try:
return (get_answer_base(
content,
context,
model
))
except Exception as error:
logger.error(
"Error extracting cognitive layers from content: %s", error, exc_info=True)
raise error
async def run_cognify_base_rag():
from cognee.api.v1.add import add
from cognee.api.v1.prune import prune
from cognee.api.v1.cognify.cognify import cognify
await prune.prune_system()
await add("data://test_datasets", "initial_test")
graph = await cognify("initial_test")
pass
async def cognify_search_base_rag(content: str, context: str):
base_config = get_base_config()
cognee_directory_path = os.path.abspath(".cognee_system")
base_config.system_root_directory = cognee_directory_path
vector_engine = get_vector_engine()
return_ = await vector_engine.search(collection_name="basic_rag", query_text=content, limit=10)
print("results", return_)
return return_
async def cognify_search_graph(content: str, context: str):
from cognee.api.v1.search import search, SearchType
params = {'query': 'Donald Trump'}
results = await search(SearchType.INSIGHTS, params)
print("results", results)
return results
def convert_goldens_to_test_cases(test_cases_raw: List[LLMTestCase]) -> List[LLMTestCase]:
test_cases = []
for case in test_cases_raw:
test_case = LLMTestCase(
input=case.input,
# Generate actual output using the 'input' and 'additional_metadata'
actual_output=str(get_answer(
case.input, case.context).model_dump()['response']),
expected_output=case.expected_output,
context=case.context,
retrieval_context=["retrieval_context"],
)
test_cases.append(test_case)
return test_cases
def convert_swe_to_deepeval_testcases(swe_dataset: List[Dict]):
deepeval_dataset = EvaluationDataset()
for datum in swe_dataset[:4]:
input = datum["problem_statement"]
expected_output = datum["patch"]
context = [datum["text"]]
# retrieval_context = datum.get(retrieval_context_key_name)
# tools_called = datum.get(tools_called_key_name)
# expected_tools = json_obj.get(expected_tools_key_name)
deepeval_dataset.add_test_case(
LLMTestCase(
input=input,
actual_output=str(get_answer(
input, context).model_dump()['response']),
expected_output=expected_output,
context=context,
# retrieval_context=retrieval_context,
# tools_called=tools_called,
# expected_tools=expected_tools,
)
)
return deepeval_dataset
swe_dataset = load_swebench_dataset(
'princeton-nlp/SWE-bench_bm25_13K', split='test')
test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
if __name__ == "__main__":
import asyncio
async def main():
# await run_cognify_base_rag()
# await cognify_search_base_rag("show_all_processes", "context")
await cognify_search_graph("show_all_processes", "context")
asyncio.run(main())
# run_cognify_base_rag_and_search()
# # Data preprocessing before setting the dataset test cases
swe_dataset = load_swebench_dataset(
'princeton-nlp/SWE-bench_bm25_13K', split='test')
test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
from deepeval.metrics import HallucinationMetric
metric = HallucinationMetric()
evalresult = test_dataset.evaluate([metric])
pass

View file

@ -1,7 +1,9 @@
import argparse
import json
import subprocess
from pathlib import Path
from datasets import Dataset
from swebench.harness.utils import load_swebench_dataset
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
@ -13,19 +15,20 @@ from cognee.infrastructure.llm.get_llm_client import get_llm_client
from evals.eval_utils import download_instances
async def cognee_and_llm(dataset, search_type=SearchType.CHUNKS):
async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
dataset_name = "SWE_test_data"
code_text = dataset[0]["text"]
code_text = instance["text"]
await cognee.add([code_text], dataset_name)
await code_graph_pipeline([dataset_name])
graph_engine = await get_graph_engine()
with open(graph_engine.filename, "r") as f:
graph_str = f.read()
problem_statement = dataset[0]['problem_statement']
problem_statement = instance['problem_statement']
instructions = (
"I need you to solve this issue by looking at the provided knowledge graph and by "
+ "generating a single patch file that I can apply directly to this repository "
@ -51,9 +54,9 @@ async def cognee_and_llm(dataset, search_type=SearchType.CHUNKS):
return answer_prediction
async def llm_on_preprocessed_data(dataset):
problem_statement = dataset[0]['problem_statement']
prompt = dataset[0]["text"]
async def generate_patch_without_cognee(instance):
problem_statement = instance['problem_statement']
prompt = instance["text"]
llm_client = get_llm_client()
answer_prediction = llm_client.create_structured_output(
@ -66,46 +69,54 @@ async def llm_on_preprocessed_data(dataset):
async def get_preds(dataset, with_cognee=True):
if with_cognee:
text_output = await cognee_and_llm(dataset)
model_name = "with_cognee"
pred_func = generate_patch_with_cognee
else:
text_output = await llm_on_preprocessed_data(dataset)
model_name = "without_cognee"
pred_func = generate_patch_without_cognee
preds = [{"instance_id": dataset[0]["instance_id"],
"model_patch": text_output,
"model_name_or_path": model_name}]
preds = [{"instance_id": instance["instance_id"],
"model_patch": await pred_func(instance),
"model_name_or_path": model_name} for instance in dataset]
return preds
async def main():
swe_dataset = load_swebench_dataset(
'princeton-nlp/SWE-bench', split='test')
swe_dataset_preprocessed = load_swebench_dataset(
'princeton-nlp/SWE-bench_bm25_13K', split='test')
test_data = swe_dataset[:1]
test_data_preprocessed = swe_dataset_preprocessed[:1]
assert test_data[0]["instance_id"] == test_data_preprocessed[0]["instance_id"]
filepath = Path("SWE-bench_testsample")
if filepath.exists():
from datasets import Dataset
dataset = Dataset.load_from_disk(filepath)
else:
dataset = download_instances(test_data, filepath)
parser = argparse.ArgumentParser(
description="Run LLM predictions on SWE-bench dataset")
parser.add_argument('--cognee_off', action='store_true')
args = parser.parse_args()
cognee_preds = await get_preds(dataset, with_cognee=True)
# nocognee_preds = await get_preds(dataset, with_cognee=False)
with open("withcognee.json", "w") as file:
json.dump(cognee_preds, file)
if args.cognee_off:
dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
dataset = load_swebench_dataset(dataset_name, split='test')
predictions_path = "preds_nocognee.json"
if Path(predictions_path).exists():
with open(predictions_path, "r") as file:
preds = json.load(file)
else:
preds = await get_preds(dataset, with_cognee=False)
with open(predictions_path, "w") as file:
json.dump(preds, file)
else:
dataset_name = 'princeton-nlp/SWE-bench_Lite'
swe_dataset = load_swebench_dataset(
dataset_name, split='test')[:1]
filepath = Path("SWE-bench_testsample")
if filepath.exists():
dataset = Dataset.load_from_disk(filepath)
else:
dataset = download_instances(swe_dataset, filepath)
predictions_path = "preds.json"
preds = await get_preds(dataset, with_cognee=not args.cognee_off)
subprocess.run(["python", "-m", "swebench.harness.run_evaluation",
"--dataset_name", 'princeton-nlp/SWE-bench',
"--dataset_name", dataset_name,
"--split", "test",
"--predictions_path", "withcognee.json",
"--predictions_path", predictions_path,
"--max_workers", "1",
"--instance_ids", test_data[0]["instance_id"],
"--run_id", "with_cognee"])
"--run_id", "test_run"])
if __name__ == "__main__":
import asyncio

View file

@ -53,7 +53,7 @@ def extract_fields(instance):
text_inputs = "\n".join([readmes_text, code_text])
text_inputs = text_inputs.strip() + "\n\n"
# text_inputs = code_text
patch = "\n".join([f"<patch>", instance["patch"], "</patch>"])
patch = "\n".join(["<patch>", instance["patch"], "</patch>"])
return {**instance, "text": text_inputs, "patch": patch}