diff --git a/evals/deepeval_on_swe_bench.py b/evals/deepeval_on_swe_bench.py
deleted file mode 100644
index 8cb94abb3..000000000
--- a/evals/deepeval_on_swe_bench.py
+++ /dev/null
@@ -1,174 +0,0 @@
-from cognee.infrastructure.databases.vector import get_vector_engine
-from cognee.base_config import get_base_config
-import os
-import logging
-from cognee.infrastructure.llm.get_llm_client import get_llm_client
-from typing import List, Dict, Type
-from swebench.harness.utils import load_swebench_dataset
-from deepeval.dataset import EvaluationDataset
-from deepeval.test_case import LLMTestCase
-from pydantic import BaseModel
-
-from deepeval.synthesizer import Synthesizer
-
-
-# DeepEval dataset for reference
-# synthesizer = Synthesizer()
-# synthesizer.generate_goldens_from_docs(
-# document_paths=['/app/.data/short_stories/soldiers_home.pdf'],
-# include_expected_output=True
-# )
-
-def convert_swe_to_deepeval(swe_dataset: List[Dict]):
- deepeval_dataset = EvaluationDataset()
- for datum in swe_dataset:
- input = datum["problem_statement"]
- expected_output = datum["patch"]
- context = [datum["text"]]
- # retrieval_context = datum.get(retrieval_context_key_name)
-
- deepeval_dataset.add_test_case(
- LLMTestCase(
- input=input,
- actual_output=None,
- expected_output=expected_output,
- context=context,
- # retrieval_context=retrieval_context,
- )
- )
- return deepeval_dataset
-
-
-swe_dataset = load_swebench_dataset(
- 'princeton-nlp/SWE-bench_bm25_13K', split='test')
-deepeval_dataset = convert_swe_to_deepeval(swe_dataset)
-
-
-logger = logging.getLogger(__name__)
-
-
-class AnswerModel(BaseModel):
- response: str
-
-
-def get_answer_base(content: str, context: str, response_model: Type[BaseModel]):
- llm_client = get_llm_client()
-
- system_prompt = "THIS IS YOUR CONTEXT:" + str(context)
-
- return llm_client.create_structured_output(content, system_prompt, response_model)
-
-
-def get_answer(content: str, context, model: Type[BaseModel] = AnswerModel):
-
- try:
- return (get_answer_base(
- content,
- context,
- model
- ))
- except Exception as error:
- logger.error(
- "Error extracting cognitive layers from content: %s", error, exc_info=True)
- raise error
-
-
-async def run_cognify_base_rag():
- from cognee.api.v1.add import add
- from cognee.api.v1.prune import prune
- from cognee.api.v1.cognify.cognify import cognify
-
- await prune.prune_system()
-
- await add("data://test_datasets", "initial_test")
-
- graph = await cognify("initial_test")
- pass
-
-
-async def cognify_search_base_rag(content: str, context: str):
- base_config = get_base_config()
-
- cognee_directory_path = os.path.abspath(".cognee_system")
- base_config.system_root_directory = cognee_directory_path
-
- vector_engine = get_vector_engine()
-
- return_ = await vector_engine.search(collection_name="basic_rag", query_text=content, limit=10)
-
- print("results", return_)
- return return_
-
-
-async def cognify_search_graph(content: str, context: str):
- from cognee.api.v1.search import search, SearchType
- params = {'query': 'Donald Trump'}
-
- results = await search(SearchType.INSIGHTS, params)
- print("results", results)
- return results
-
-
-def convert_goldens_to_test_cases(test_cases_raw: List[LLMTestCase]) -> List[LLMTestCase]:
- test_cases = []
- for case in test_cases_raw:
- test_case = LLMTestCase(
- input=case.input,
- # Generate actual output using the 'input' and 'additional_metadata'
- actual_output=str(get_answer(
- case.input, case.context).model_dump()['response']),
- expected_output=case.expected_output,
- context=case.context,
- retrieval_context=["retrieval_context"],
- )
- test_cases.append(test_case)
- return test_cases
-
-
-def convert_swe_to_deepeval_testcases(swe_dataset: List[Dict]):
- deepeval_dataset = EvaluationDataset()
- for datum in swe_dataset[:4]:
- input = datum["problem_statement"]
- expected_output = datum["patch"]
- context = [datum["text"]]
- # retrieval_context = datum.get(retrieval_context_key_name)
- # tools_called = datum.get(tools_called_key_name)
- # expected_tools = json_obj.get(expected_tools_key_name)
-
- deepeval_dataset.add_test_case(
- LLMTestCase(
- input=input,
- actual_output=str(get_answer(
- input, context).model_dump()['response']),
- expected_output=expected_output,
- context=context,
- # retrieval_context=retrieval_context,
- # tools_called=tools_called,
- # expected_tools=expected_tools,
- )
- )
- return deepeval_dataset
-
-
-swe_dataset = load_swebench_dataset(
- 'princeton-nlp/SWE-bench_bm25_13K', split='test')
-test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
-
-if __name__ == "__main__":
-
- import asyncio
-
- async def main():
- # await run_cognify_base_rag()
- # await cognify_search_base_rag("show_all_processes", "context")
- await cognify_search_graph("show_all_processes", "context")
- asyncio.run(main())
- # run_cognify_base_rag_and_search()
- # # Data preprocessing before setting the dataset test cases
- swe_dataset = load_swebench_dataset(
- 'princeton-nlp/SWE-bench_bm25_13K', split='test')
- test_dataset = convert_swe_to_deepeval_testcases(swe_dataset)
- from deepeval.metrics import HallucinationMetric
- metric = HallucinationMetric()
- evalresult = test_dataset.evaluate([metric])
- pass
diff --git a/evals/eval_swe_bench.py b/evals/eval_swe_bench.py
index 2cb221576..c0ab6d67e 100644
--- a/evals/eval_swe_bench.py
+++ b/evals/eval_swe_bench.py
@@ -1,7 +1,9 @@
+import argparse
import json
import subprocess
from pathlib import Path
+from datasets import Dataset
from swebench.harness.utils import load_swebench_dataset
from swebench.inference.make_datasets.create_instance import PATCH_EXAMPLE
@@ -13,19 +15,20 @@ from cognee.infrastructure.llm.get_llm_client import get_llm_client
from evals.eval_utils import download_instances
-async def cognee_and_llm(dataset, search_type=SearchType.CHUNKS):
+async def generate_patch_with_cognee(instance, search_type=SearchType.CHUNKS):
+
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
dataset_name = "SWE_test_data"
- code_text = dataset[0]["text"]
+ code_text = instance["text"]
await cognee.add([code_text], dataset_name)
await code_graph_pipeline([dataset_name])
graph_engine = await get_graph_engine()
with open(graph_engine.filename, "r") as f:
graph_str = f.read()
- problem_statement = dataset[0]['problem_statement']
+ problem_statement = instance['problem_statement']
instructions = (
"I need you to solve this issue by looking at the provided knowledge graph and by "
+ "generating a single patch file that I can apply directly to this repository "
@@ -51,9 +54,9 @@ async def cognee_and_llm(dataset, search_type=SearchType.CHUNKS):
return answer_prediction
-async def llm_on_preprocessed_data(dataset):
- problem_statement = dataset[0]['problem_statement']
- prompt = dataset[0]["text"]
+async def generate_patch_without_cognee(instance):
+ problem_statement = instance['problem_statement']
+ prompt = instance["text"]
llm_client = get_llm_client()
answer_prediction = llm_client.create_structured_output(
@@ -66,46 +69,54 @@ async def llm_on_preprocessed_data(dataset):
async def get_preds(dataset, with_cognee=True):
if with_cognee:
- text_output = await cognee_and_llm(dataset)
model_name = "with_cognee"
+ pred_func = generate_patch_with_cognee
else:
- text_output = await llm_on_preprocessed_data(dataset)
model_name = "without_cognee"
+ pred_func = generate_patch_without_cognee
- preds = [{"instance_id": dataset[0]["instance_id"],
- "model_patch": text_output,
- "model_name_or_path": model_name}]
+ preds = [{"instance_id": instance["instance_id"],
+ "model_patch": await pred_func(instance),
+ "model_name_or_path": model_name} for instance in dataset]
return preds
async def main():
- swe_dataset = load_swebench_dataset(
- 'princeton-nlp/SWE-bench', split='test')
- swe_dataset_preprocessed = load_swebench_dataset(
- 'princeton-nlp/SWE-bench_bm25_13K', split='test')
- test_data = swe_dataset[:1]
- test_data_preprocessed = swe_dataset_preprocessed[:1]
- assert test_data[0]["instance_id"] == test_data_preprocessed[0]["instance_id"]
- filepath = Path("SWE-bench_testsample")
- if filepath.exists():
- from datasets import Dataset
- dataset = Dataset.load_from_disk(filepath)
- else:
- dataset = download_instances(test_data, filepath)
+ parser = argparse.ArgumentParser(
+ description="Run LLM predictions on SWE-bench dataset")
+ parser.add_argument('--cognee_off', action='store_true')
+ args = parser.parse_args()
- cognee_preds = await get_preds(dataset, with_cognee=True)
- # nocognee_preds = await get_preds(dataset, with_cognee=False)
- with open("withcognee.json", "w") as file:
- json.dump(cognee_preds, file)
+ if args.cognee_off:
+ dataset_name = 'princeton-nlp/SWE-bench_Lite_bm25_13K'
+ dataset = load_swebench_dataset(dataset_name, split='test')
+ predictions_path = "preds_nocognee.json"
+ if Path(predictions_path).exists():
+ with open(predictions_path, "r") as file:
+ preds = json.load(file)
+ else:
+ preds = await get_preds(dataset, with_cognee=False)
+ with open(predictions_path, "w") as file:
+ json.dump(preds, file)
+ else:
+ dataset_name = 'princeton-nlp/SWE-bench_Lite'
+ swe_dataset = load_swebench_dataset(
+ dataset_name, split='test')[:1]
+ filepath = Path("SWE-bench_testsample")
+ if filepath.exists():
+ dataset = Dataset.load_from_disk(filepath)
+ else:
+ dataset = download_instances(swe_dataset, filepath)
+ predictions_path = "preds.json"
+ preds = await get_preds(dataset, with_cognee=not args.cognee_off)
subprocess.run(["python", "-m", "swebench.harness.run_evaluation",
- "--dataset_name", 'princeton-nlp/SWE-bench',
+ "--dataset_name", dataset_name,
"--split", "test",
- "--predictions_path", "withcognee.json",
+ "--predictions_path", predictions_path,
"--max_workers", "1",
- "--instance_ids", test_data[0]["instance_id"],
- "--run_id", "with_cognee"])
+ "--run_id", "test_run"])
if __name__ == "__main__":
import asyncio
diff --git a/evals/eval_utils.py b/evals/eval_utils.py
index e4f070ffd..e95a84cec 100644
--- a/evals/eval_utils.py
+++ b/evals/eval_utils.py
@@ -53,7 +53,7 @@ def extract_fields(instance):
text_inputs = "\n".join([readmes_text, code_text])
text_inputs = text_inputs.strip() + "\n\n"
# text_inputs = code_text
- patch = "\n".join([f"", instance["patch"], ""])
+ patch = "\n".join(["", instance["patch"], ""])
return {**instance, "text": text_inputs, "patch": patch}