feat: Add incremental eval option to paramset (#446)

* QA eval dataset as argument, with hotpot and 2wikimultihop as options. Json schema validation for datasets.

* Load dataset file by filename, outsource utilities

* restructure metric selection

* Add comprehensiveness, diversity and empowerment metrics

* add promptfoo as an option

* refactor RAG solution in eval;2C

* LLM as a judge metrics implemented in a uniform way

* Use requests.get instead of wget

* clean up promptfoo config template

* minor fixes

* get promptfoo path instead of hardcoding

* minor fixes

* Add LLM as a judge prompts

* Support 4 different rag options in eval

* Minor refactor and logger usage

* feat: make tasks a configurable argument in the cognify function

* Run eval on a set of parameters and save results as json and png

* fix: add data points task

* script for running all param combinations

* enable context provider to get tasks as param

* bugfix in simple rag

* Incremental eval of cognee pipeline

* potential fix: single asyncio run

* temp fix: exclude insights

* Remove insights, have single asyncio run, refactor

* Include incremental eval in accepted paramsets

* minor fixes

* handle pipeline slices in utils

* Handle insights and customize search types

* Handle retrieved edges more safely

* bugfix

* fix simple rag

---------

Co-authored-by: lxobr <122801072+lxobr@users.noreply.github.com>
Co-authored-by: hajdul88 <52442977+hajdul88@users.noreply.github.com>
This commit is contained in:
alekszievr 2025-01-17 18:04:31 +01:00 committed by GitHub
parent 2e010f8dd1
commit 75bc7f67eb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 79 additions and 24 deletions

View file

@ -9,7 +9,7 @@ from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt, render_prompt from cognee.infrastructure.llm.prompts import read_query_prompt, render_prompt
from evals.qa_dataset_utils import load_qa_dataset from evals.qa_dataset_utils import load_qa_dataset
from evals.qa_metrics_utils import get_metrics from evals.qa_metrics_utils import get_metrics
from evals.qa_context_provider_utils import qa_context_providers, create_cognee_context_getter from evals.qa_context_provider_utils import qa_context_providers, valid_pipeline_slices
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -97,7 +97,7 @@ async def eval_on_QA_dataset(
async def incremental_eval_on_QA_dataset( async def incremental_eval_on_QA_dataset(
dataset_name_or_filename: str, num_samples, metric_name_list dataset_name_or_filename: str, num_samples, metric_name_list
): ):
pipeline_slice_names = ["base", "extract_chunks", "extract_graph", "summarize"] pipeline_slice_names = valid_pipeline_slices.keys()
incremental_results = {} incremental_results = {}
for pipeline_slice_name in pipeline_slice_names: for pipeline_slice_name in pipeline_slice_names:

View file

@ -5,6 +5,9 @@ from cognee.modules.retrieval.brute_force_triplet_search import brute_force_trip
from cognee.tasks.completion.graph_query_completion import retrieved_edges_to_string from cognee.tasks.completion.graph_query_completion import retrieved_edges_to_string
from functools import partial from functools import partial
from cognee.api.v1.cognify.cognify_v2 import get_default_tasks from cognee.api.v1.cognify.cognify_v2 import get_default_tasks
import logging
logger = logging.getLogger(__name__)
async def get_raw_context(instance: dict) -> str: async def get_raw_context(instance: dict) -> str:
@ -24,6 +27,34 @@ async def cognify_instance(instance: dict, task_indices: list[int] = None):
await cognee.cognify("QA", tasks=selected_tasks) await cognee.cognify("QA", tasks=selected_tasks)
def _insight_to_string(triplet: tuple) -> str:
if not (isinstance(triplet, tuple) and len(triplet) == 3):
logger.warning("Invalid input: Expected a tuple of length 3.")
return ""
node1, edge, node2 = triplet
if not (isinstance(node1, dict) and isinstance(edge, dict) and isinstance(node2, dict)):
logger.warning("Invalid input: Each element in the tuple must be a dictionary.")
return ""
node1_name = node1["name"] if "name" in node1 else "N/A"
node1_description = node1["description"] if "description" in node1 else node1["text"]
node1_string = f"name: {node1_name}, description: {node1_description}"
node2_name = node2["name"] if "name" in node2 else "N/A"
node2_description = node2["description"] if "description" in node2 else node2["text"]
node2_string = f"name: {node2_name}, description: {node2_description}"
edge_string = edge.get("relationship_name", "")
if not edge_string:
logger.warning("Missing required field: 'relationship_name' in edge dictionary.")
return ""
triplet_str = f"{node1_string} -- {edge_string} -- {node2_string}"
return triplet_str
async def get_context_with_cognee( async def get_context_with_cognee(
instance: dict, instance: dict,
task_indices: list[int] = None, task_indices: list[int] = None,
@ -33,9 +64,24 @@ async def get_context_with_cognee(
search_results = [] search_results = []
for search_type in search_types: for search_type in search_types:
search_results += await cognee.search(search_type, query_text=instance["question"]) raw_search_results = await cognee.search(search_type, query_text=instance["question"])
search_results_str = "\n".join([context_item["text"] for context_item in search_results]) if search_type == SearchType.INSIGHTS:
res_list = [_insight_to_string(edge) for edge in raw_search_results]
else:
res_list = [
context_item.get("text", "")
for context_item in raw_search_results
if isinstance(context_item, dict)
]
if all(not text for text in res_list):
logger.warning(
"res_list contains only empty strings: No valid 'text' entries found in raw_search_results."
)
search_results += res_list
search_results_str = "\n".join(search_results)
return search_results_str return search_results_str
@ -47,11 +93,7 @@ def create_cognee_context_getter(
async def get_context_with_simple_rag(instance: dict) -> str: async def get_context_with_simple_rag(instance: dict) -> str:
await cognee.prune.prune_data() await cognify_instance(instance)
await cognee.prune.prune_system(metadata=True)
for title, sentences in instance["context"]:
await cognee.add("\n".join(sentences), dataset_name="QA")
vector_engine = get_vector_engine() vector_engine = get_vector_engine()
found_chunks = await vector_engine.search("document_chunk_text", instance["question"], limit=5) found_chunks = await vector_engine.search("document_chunk_text", instance["question"], limit=5)
@ -72,10 +114,14 @@ async def get_context_with_brute_force_triplet_search(instance: dict) -> str:
valid_pipeline_slices = { valid_pipeline_slices = {
"base": [0, 1, 5], "extract_graph": {
"extract_chunks": [0, 1, 2, 5], "slice": [0, 1, 2, 3, 5],
"extract_graph": [0, 1, 2, 3, 5], "search_types": [SearchType.INSIGHTS, SearchType.CHUNKS],
"summarize": [0, 1, 2, 3, 4, 5], },
"summarize": {
"slice": [0, 1, 2, 3, 4, 5],
"search_types": [SearchType.INSIGHTS, SearchType.SUMMARIES, SearchType.CHUNKS],
},
} }
qa_context_providers = { qa_context_providers = {
@ -84,6 +130,8 @@ qa_context_providers = {
"simple_rag": get_context_with_simple_rag, "simple_rag": get_context_with_simple_rag,
"brute_force": get_context_with_brute_force_triplet_search, "brute_force": get_context_with_brute_force_triplet_search,
} | { } | {
name: create_cognee_context_getter(task_indices=slice) name: create_cognee_context_getter(
for name, slice in valid_pipeline_slices.items() task_indices=value["slice"], search_types=value["search_types"]
)
for name, value in valid_pipeline_slices.items()
} }

View file

@ -1,5 +1,5 @@
import asyncio import asyncio
from evals.eval_on_hotpot import eval_on_QA_dataset from evals.eval_on_hotpot import eval_on_QA_dataset, incremental_eval_on_QA_dataset
from evals.qa_eval_utils import get_combinations, save_results_as_image from evals.qa_eval_utils import get_combinations, save_results_as_image
import argparse import argparse
from pathlib import Path from pathlib import Path
@ -15,19 +15,26 @@ async def run_evals_on_paramset(paramset: dict, out_path: str):
num_samples = params["num_samples"] num_samples = params["num_samples"]
rag_option = params["rag_option"] rag_option = params["rag_option"]
result = await eval_on_QA_dataset(
dataset,
rag_option,
num_samples,
paramset["metric_names"],
)
if dataset not in results: if dataset not in results:
results[dataset] = {} results[dataset] = {}
if num_samples not in results[dataset]: if num_samples not in results[dataset]:
results[dataset][num_samples] = {} results[dataset][num_samples] = {}
results[dataset][num_samples][rag_option] = result if rag_option == "cognee_incremental":
result = await incremental_eval_on_QA_dataset(
dataset,
num_samples,
paramset["metric_names"],
)
results[dataset][num_samples] |= result
else:
result = await eval_on_QA_dataset(
dataset,
rag_option,
num_samples,
paramset["metric_names"],
)
results[dataset][num_samples][rag_option] = result
with open(json_path, "w") as file: with open(json_path, "w") as file:
json.dump(results, file, indent=1) json.dump(results, file, indent=1)