Incremental eval of cognee pipeline (#445)

* QA eval dataset as argument, with hotpot and 2wikimultihop as options. Json schema validation for datasets.

* Load dataset file by filename, outsource utilities

* restructure metric selection

* Add comprehensiveness, diversity and empowerment metrics

* add promptfoo as an option

* refactor RAG solution in eval;2C

* LLM as a judge metrics implemented in a uniform way

* Use requests.get instead of wget

* clean up promptfoo config template

* minor fixes

* get promptfoo path instead of hardcoding

* minor fixes

* Add LLM as a judge prompts

* Support 4 different rag options in eval

* Minor refactor and logger usage

* feat: make tasks a configurable argument in the cognify function

* Run eval on a set of parameters and save results as json and png

* fix: add data points task

* script for running all param combinations

* enable context provider to get tasks as param

* bugfix in simple rag

* Incremental eval of cognee pipeline

* potential fix: single asyncio run

* temp fix: exclude insights

* Remove insights, have single asyncio run, refactor

* minor fixes

* handle pipeline slices in utils

* include all options in params json

---------

Co-authored-by: lxobr <122801072+lxobr@users.noreply.github.com>
Co-authored-by: hajdul88 <52442977+hajdul88@users.noreply.github.com>
This commit is contained in:
alekszievr 2025-01-17 14:16:48 +01:00 committed by GitHub
parent ffa3c2daa0
commit 2e010f8dd1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 69 additions and 21 deletions

View file

@ -9,7 +9,7 @@ from cognee.infrastructure.llm.get_llm_client import get_llm_client
from cognee.infrastructure.llm.prompts import read_query_prompt, render_prompt
from evals.qa_dataset_utils import load_qa_dataset
from evals.qa_metrics_utils import get_metrics
from evals.qa_context_provider_utils import qa_context_providers
from evals.qa_context_provider_utils import qa_context_providers, create_cognee_context_getter
logger = logging.getLogger(__name__)
@ -94,14 +94,29 @@ async def eval_on_QA_dataset(
return results
if __name__ == "__main__":
async def incremental_eval_on_QA_dataset(
dataset_name_or_filename: str, num_samples, metric_name_list
):
pipeline_slice_names = ["base", "extract_chunks", "extract_graph", "summarize"]
incremental_results = {}
for pipeline_slice_name in pipeline_slice_names:
results = await eval_on_QA_dataset(
dataset_name_or_filename, pipeline_slice_name, num_samples, metric_name_list
)
incremental_results[pipeline_slice_name] = results
return incremental_results
async def main():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True, help="Which dataset to evaluate on")
parser.add_argument(
"--rag_option",
type=str,
choices=qa_context_providers.keys(),
choices=list(qa_context_providers.keys()) + ["cognee_incremental"],
required=True,
help="RAG option to use for providing context",
)
@ -110,7 +125,18 @@ if __name__ == "__main__":
args = parser.parse_args()
avg_scores = asyncio.run(
eval_on_QA_dataset(args.dataset, args.rag_option, args.num_samples, args.metrics)
)
if args.rag_option == "cognee_incremental":
avg_scores = await incremental_eval_on_QA_dataset(
args.dataset, args.num_samples, args.metrics
)
else:
avg_scores = await eval_on_QA_dataset(
args.dataset, args.rag_option, args.num_samples, args.metrics
)
logger.info(f"{avg_scores}")
if __name__ == "__main__":
asyncio.run(main())

View file

@ -4,11 +4,8 @@ These are the official evaluation metrics for HotpotQA taken from https://hotpot
import re
import string
import sys
from collections import Counter
import ujson as json
def normalize_answer(s):
def remove_articles(text):

View file

@ -3,35 +3,49 @@ from cognee.api.v1.search import SearchType
from cognee.infrastructure.databases.vector import get_vector_engine
from cognee.modules.retrieval.brute_force_triplet_search import brute_force_triplet_search
from cognee.tasks.completion.graph_query_completion import retrieved_edges_to_string
from functools import partial
from cognee.api.v1.cognify.cognify_v2 import get_default_tasks
async def get_raw_context(instance: dict) -> str:
return instance["context"]
async def cognify_instance(instance: dict):
async def cognify_instance(instance: dict, task_indices: list[int] = None):
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
for title, sentences in instance["context"]:
await cognee.add("\n".join(sentences), dataset_name="QA")
await cognee.cognify("QA")
all_cognify_tasks = await get_default_tasks()
if task_indices:
selected_tasks = [all_cognify_tasks[ind] for ind in task_indices]
else:
selected_tasks = all_cognify_tasks
await cognee.cognify("QA", tasks=selected_tasks)
async def get_context_with_cognee(instance: dict) -> str:
await cognify_instance(instance)
async def get_context_with_cognee(
instance: dict,
task_indices: list[int] = None,
search_types: list[SearchType] = [SearchType.SUMMARIES, SearchType.CHUNKS],
) -> str:
await cognify_instance(instance, task_indices)
# TODO: Fix insights
# insights = await cognee.search(SearchType.INSIGHTS, query_text=instance["question"])
summaries = await cognee.search(SearchType.SUMMARIES, query_text=instance["question"])
# search_results = insights + summaries
search_results = summaries
search_results = []
for search_type in search_types:
search_results += await cognee.search(search_type, query_text=instance["question"])
search_results_str = "\n".join([context_item["text"] for context_item in search_results])
return search_results_str
def create_cognee_context_getter(
task_indices=None, search_types=[SearchType.SUMMARIES, SearchType.CHUNKS]
):
return partial(get_context_with_cognee, task_indices=task_indices, search_types=search_types)
async def get_context_with_simple_rag(instance: dict) -> str:
await cognee.prune.prune_data()
await cognee.prune.prune_system(metadata=True)
@ -57,9 +71,19 @@ async def get_context_with_brute_force_triplet_search(instance: dict) -> str:
return search_results_str
valid_pipeline_slices = {
"base": [0, 1, 5],
"extract_chunks": [0, 1, 2, 5],
"extract_graph": [0, 1, 2, 3, 5],
"summarize": [0, 1, 2, 3, 4, 5],
}
qa_context_providers = {
"no_rag": get_raw_context,
"cognee": get_context_with_cognee,
"simple_rag": get_context_with_simple_rag,
"brute_force": get_context_with_brute_force_triplet_search,
} | {
name: create_cognee_context_getter(task_indices=slice)
for name, slice in valid_pipeline_slices.items()
}

View file

@ -3,8 +3,9 @@
"hotpotqa"
],
"rag_option": [
"no_rag",
"cognee_incremental",
"cognee",
"no_rag",
"simple_rag",
"brute_force"
],

View file

@ -44,7 +44,7 @@ def save_results_as_image(results, out_path):
for num_samples, table_data in num_samples_data.items():
df = pd.DataFrame.from_dict(table_data, orient="index")
df.index.name = f"Dataset: {dataset}, Num Samples: {num_samples}"
image_path = Path(out_path) / Path(f"table_{dataset}_{num_samples}.png")
image_path = out_path / Path(f"table_{dataset}_{num_samples}.png")
save_table_as_image(df, image_path)