feat: Add incremental eval option to paramset (#446)
* QA eval dataset as argument, with hotpot and 2wikimultihop as options. Json schema validation for datasets. * Load dataset file by filename, outsource utilities * restructure metric selection * Add comprehensiveness, diversity and empowerment metrics * add promptfoo as an option * refactor RAG solution in eval;2C * LLM as a judge metrics implemented in a uniform way * Use requests.get instead of wget * clean up promptfoo config template * minor fixes * get promptfoo path instead of hardcoding * minor fixes * Add LLM as a judge prompts * Support 4 different rag options in eval * Minor refactor and logger usage * feat: make tasks a configurable argument in the cognify function * Run eval on a set of parameters and save results as json and png * fix: add data points task * script for running all param combinations * enable context provider to get tasks as param * bugfix in simple rag * Incremental eval of cognee pipeline * potential fix: single asyncio run * temp fix: exclude insights * Remove insights, have single asyncio run, refactor * Include incremental eval in accepted paramsets * minor fixes * handle pipeline slices in utils * Handle insights and customize search types * Handle retrieved edges more safely * bugfix * fix simple rag --------- Co-authored-by: lxobr <122801072+lxobr@users.noreply.github.com> Co-authored-by: hajdul88 <52442977+hajdul88@users.noreply.github.com>
This commit is contained in:
parent
2e010f8dd1
commit
75bc7f67eb
3 changed files with 79 additions and 24 deletions
|
|
@ -9,7 +9,7 @@ from cognee.infrastructure.llm.get_llm_client import get_llm_client
|
|||
from cognee.infrastructure.llm.prompts import read_query_prompt, render_prompt
|
||||
from evals.qa_dataset_utils import load_qa_dataset
|
||||
from evals.qa_metrics_utils import get_metrics
|
||||
from evals.qa_context_provider_utils import qa_context_providers, create_cognee_context_getter
|
||||
from evals.qa_context_provider_utils import qa_context_providers, valid_pipeline_slices
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
|
@ -97,7 +97,7 @@ async def eval_on_QA_dataset(
|
|||
async def incremental_eval_on_QA_dataset(
|
||||
dataset_name_or_filename: str, num_samples, metric_name_list
|
||||
):
|
||||
pipeline_slice_names = ["base", "extract_chunks", "extract_graph", "summarize"]
|
||||
pipeline_slice_names = valid_pipeline_slices.keys()
|
||||
|
||||
incremental_results = {}
|
||||
for pipeline_slice_name in pipeline_slice_names:
|
||||
|
|
|
|||
|
|
@ -5,6 +5,9 @@ from cognee.modules.retrieval.brute_force_triplet_search import brute_force_trip
|
|||
from cognee.tasks.completion.graph_query_completion import retrieved_edges_to_string
|
||||
from functools import partial
|
||||
from cognee.api.v1.cognify.cognify_v2 import get_default_tasks
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def get_raw_context(instance: dict) -> str:
|
||||
|
|
@ -24,6 +27,34 @@ async def cognify_instance(instance: dict, task_indices: list[int] = None):
|
|||
await cognee.cognify("QA", tasks=selected_tasks)
|
||||
|
||||
|
||||
def _insight_to_string(triplet: tuple) -> str:
|
||||
if not (isinstance(triplet, tuple) and len(triplet) == 3):
|
||||
logger.warning("Invalid input: Expected a tuple of length 3.")
|
||||
return ""
|
||||
|
||||
node1, edge, node2 = triplet
|
||||
|
||||
if not (isinstance(node1, dict) and isinstance(edge, dict) and isinstance(node2, dict)):
|
||||
logger.warning("Invalid input: Each element in the tuple must be a dictionary.")
|
||||
return ""
|
||||
|
||||
node1_name = node1["name"] if "name" in node1 else "N/A"
|
||||
node1_description = node1["description"] if "description" in node1 else node1["text"]
|
||||
node1_string = f"name: {node1_name}, description: {node1_description}"
|
||||
node2_name = node2["name"] if "name" in node2 else "N/A"
|
||||
node2_description = node2["description"] if "description" in node2 else node2["text"]
|
||||
node2_string = f"name: {node2_name}, description: {node2_description}"
|
||||
|
||||
edge_string = edge.get("relationship_name", "")
|
||||
|
||||
if not edge_string:
|
||||
logger.warning("Missing required field: 'relationship_name' in edge dictionary.")
|
||||
return ""
|
||||
|
||||
triplet_str = f"{node1_string} -- {edge_string} -- {node2_string}"
|
||||
return triplet_str
|
||||
|
||||
|
||||
async def get_context_with_cognee(
|
||||
instance: dict,
|
||||
task_indices: list[int] = None,
|
||||
|
|
@ -33,9 +64,24 @@ async def get_context_with_cognee(
|
|||
|
||||
search_results = []
|
||||
for search_type in search_types:
|
||||
search_results += await cognee.search(search_type, query_text=instance["question"])
|
||||
raw_search_results = await cognee.search(search_type, query_text=instance["question"])
|
||||
|
||||
search_results_str = "\n".join([context_item["text"] for context_item in search_results])
|
||||
if search_type == SearchType.INSIGHTS:
|
||||
res_list = [_insight_to_string(edge) for edge in raw_search_results]
|
||||
else:
|
||||
res_list = [
|
||||
context_item.get("text", "")
|
||||
for context_item in raw_search_results
|
||||
if isinstance(context_item, dict)
|
||||
]
|
||||
if all(not text for text in res_list):
|
||||
logger.warning(
|
||||
"res_list contains only empty strings: No valid 'text' entries found in raw_search_results."
|
||||
)
|
||||
|
||||
search_results += res_list
|
||||
|
||||
search_results_str = "\n".join(search_results)
|
||||
|
||||
return search_results_str
|
||||
|
||||
|
|
@ -47,11 +93,7 @@ def create_cognee_context_getter(
|
|||
|
||||
|
||||
async def get_context_with_simple_rag(instance: dict) -> str:
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
for title, sentences in instance["context"]:
|
||||
await cognee.add("\n".join(sentences), dataset_name="QA")
|
||||
await cognify_instance(instance)
|
||||
|
||||
vector_engine = get_vector_engine()
|
||||
found_chunks = await vector_engine.search("document_chunk_text", instance["question"], limit=5)
|
||||
|
|
@ -72,10 +114,14 @@ async def get_context_with_brute_force_triplet_search(instance: dict) -> str:
|
|||
|
||||
|
||||
valid_pipeline_slices = {
|
||||
"base": [0, 1, 5],
|
||||
"extract_chunks": [0, 1, 2, 5],
|
||||
"extract_graph": [0, 1, 2, 3, 5],
|
||||
"summarize": [0, 1, 2, 3, 4, 5],
|
||||
"extract_graph": {
|
||||
"slice": [0, 1, 2, 3, 5],
|
||||
"search_types": [SearchType.INSIGHTS, SearchType.CHUNKS],
|
||||
},
|
||||
"summarize": {
|
||||
"slice": [0, 1, 2, 3, 4, 5],
|
||||
"search_types": [SearchType.INSIGHTS, SearchType.SUMMARIES, SearchType.CHUNKS],
|
||||
},
|
||||
}
|
||||
|
||||
qa_context_providers = {
|
||||
|
|
@ -84,6 +130,8 @@ qa_context_providers = {
|
|||
"simple_rag": get_context_with_simple_rag,
|
||||
"brute_force": get_context_with_brute_force_triplet_search,
|
||||
} | {
|
||||
name: create_cognee_context_getter(task_indices=slice)
|
||||
for name, slice in valid_pipeline_slices.items()
|
||||
name: create_cognee_context_getter(
|
||||
task_indices=value["slice"], search_types=value["search_types"]
|
||||
)
|
||||
for name, value in valid_pipeline_slices.items()
|
||||
}
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
import asyncio
|
||||
from evals.eval_on_hotpot import eval_on_QA_dataset
|
||||
from evals.eval_on_hotpot import eval_on_QA_dataset, incremental_eval_on_QA_dataset
|
||||
from evals.qa_eval_utils import get_combinations, save_results_as_image
|
||||
import argparse
|
||||
from pathlib import Path
|
||||
|
|
@ -15,19 +15,26 @@ async def run_evals_on_paramset(paramset: dict, out_path: str):
|
|||
num_samples = params["num_samples"]
|
||||
rag_option = params["rag_option"]
|
||||
|
||||
result = await eval_on_QA_dataset(
|
||||
dataset,
|
||||
rag_option,
|
||||
num_samples,
|
||||
paramset["metric_names"],
|
||||
)
|
||||
|
||||
if dataset not in results:
|
||||
results[dataset] = {}
|
||||
if num_samples not in results[dataset]:
|
||||
results[dataset][num_samples] = {}
|
||||
|
||||
results[dataset][num_samples][rag_option] = result
|
||||
if rag_option == "cognee_incremental":
|
||||
result = await incremental_eval_on_QA_dataset(
|
||||
dataset,
|
||||
num_samples,
|
||||
paramset["metric_names"],
|
||||
)
|
||||
results[dataset][num_samples] |= result
|
||||
else:
|
||||
result = await eval_on_QA_dataset(
|
||||
dataset,
|
||||
rag_option,
|
||||
num_samples,
|
||||
paramset["metric_names"],
|
||||
)
|
||||
results[dataset][num_samples][rag_option] = result
|
||||
|
||||
with open(json_path, "w") as file:
|
||||
json.dump(results, file, indent=1)
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue