Merge pull request #177 from topoteretes/simple-python-example
Simple python example
This commit is contained in:
commit
401befc687
2 changed files with 65 additions and 10 deletions
36
README.md
36
README.md
|
|
@ -96,24 +96,40 @@ DB_PASSWORD=cognee
|
|||
|
||||
### Simple example
|
||||
|
||||
Run the default cognee pipeline:
|
||||
First, copy `.env.template` to `.env` and add your OpenAI API key to the LLM_API_KEY field.
|
||||
|
||||
```
|
||||
Optionally, set `VECTOR_DB_PROVIDER="lancedb"` in `.env` to simplify setup.
|
||||
|
||||
This script will run the default pipeline:
|
||||
|
||||
```python
|
||||
import cognee
|
||||
import asyncio
|
||||
from cognee.api.v1.search import SearchType
|
||||
|
||||
text = """Natural language processing (NLP) is an interdisciplinary
|
||||
subfield of computer science and information retrieval"""
|
||||
async def main():
|
||||
await cognee.prune.prune_data() # Reset cognee data
|
||||
await cognee.prune.prune_system(metadata=True) # Reset cognee system state
|
||||
|
||||
await cognee.add(text) # Add a new piece of information
|
||||
text = """
|
||||
Natural language processing (NLP) is an interdisciplinary
|
||||
subfield of computer science and information retrieval.
|
||||
"""
|
||||
|
||||
await cognee.cognify() # Use LLMs and cognee to create a knowledge graph
|
||||
await cognee.add(text) # Add text to cognee
|
||||
await cognee.cognify() # Use LLMs and cognee to create knowledge graph
|
||||
|
||||
search_results = await cognee.search("INSIGHTS", {'query': 'NLP'}) # Query cognee for the insights
|
||||
search_results = await cognee.search( # Search cognee for insights
|
||||
SearchType.INSIGHTS,
|
||||
{'query': 'Tell me about NLP'}
|
||||
)
|
||||
|
||||
for result in search_results:
|
||||
do_something_with_result(result)
|
||||
for result_text in search_results: # Display results
|
||||
print(result_text)
|
||||
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
A version of this example is here: `examples/pyton/simple_example.py`
|
||||
|
||||
### Create your own memory store
|
||||
|
||||
|
|
|
|||
39
examples/python/simple_example.py
Normal file
39
examples/python/simple_example.py
Normal file
|
|
@ -0,0 +1,39 @@
|
|||
import cognee
|
||||
import asyncio
|
||||
from cognee.api.v1.search import SearchType
|
||||
|
||||
# Prerequisites:
|
||||
# 1. Copy `.env.template` and rename it to `.env`.
|
||||
# 2. Add your OpenAI API key to the `.env` file in the `LLM_API_KEY` field:
|
||||
# LLM_API_KEY = "your_key_here"
|
||||
# 3. (Optional) To minimize setup effort, set `VECTOR_DB_PROVIDER="lancedb"` in `.env".
|
||||
|
||||
async def main():
|
||||
# Create a clean slate for cognee -- reset data and system state
|
||||
await cognee.prune.prune_data()
|
||||
await cognee.prune.prune_system(metadata=True)
|
||||
|
||||
# cognee knowledge graph will be created based on this text
|
||||
text = """
|
||||
Natural language processing (NLP) is an interdisciplinary
|
||||
subfield of computer science and information retrieval.
|
||||
"""
|
||||
|
||||
# Add the text, and make it available for cognify
|
||||
await cognee.add(text)
|
||||
|
||||
# Use LLMs and cognee to create knowledge graph
|
||||
await cognee.cognify()
|
||||
|
||||
# Query cognee for insights on the added text
|
||||
search_results = await cognee.search(
|
||||
SearchType.INSIGHTS,
|
||||
{'query': 'Tell me about NLP'}
|
||||
)
|
||||
|
||||
# Display search results
|
||||
for result_text in search_results:
|
||||
print(result_text)
|
||||
|
||||
if __name__ == '__main__':
|
||||
asyncio.run(main())
|
||||
Loading…
Add table
Reference in a new issue