Merge pull request #176 from topoteretes/fix/integration-test-warnings
COG-485 - Fix/integration test warnings
This commit is contained in:
commit
d3d49b64be
21 changed files with 1370 additions and 1292 deletions
|
|
@ -146,7 +146,7 @@ class DatasetDTO(OutDTO):
|
|||
id: UUID
|
||||
name: str
|
||||
created_at: datetime
|
||||
updated_at: Optional[datetime]
|
||||
updated_at: Optional[datetime] = None
|
||||
owner_id: UUID
|
||||
|
||||
@app.get("/api/v1/datasets", response_model = list[DatasetDTO])
|
||||
|
|
@ -200,7 +200,7 @@ class DataDTO(OutDTO):
|
|||
id: UUID
|
||||
name: str
|
||||
created_at: datetime
|
||||
updated_at: Optional[datetime]
|
||||
updated_at: Optional[datetime] = None
|
||||
extension: str
|
||||
mime_type: str
|
||||
raw_data_location: str
|
||||
|
|
|
|||
|
|
@ -1,25 +0,0 @@
|
|||
from typing import List, Optional
|
||||
from fastembed import TextEmbedding
|
||||
from cognee.root_dir import get_absolute_path
|
||||
from cognee.infrastructure.databases.vector.embeddings.EmbeddingEngine import EmbeddingEngine
|
||||
|
||||
class FastembedEmbeddingEngine(EmbeddingEngine):
|
||||
embedding_model: str
|
||||
embedding_dimensions: int
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_model: Optional[str] = "BAAI/bge-large-en-v1.5",
|
||||
embedding_dimensions: Optional[int] = 1024,
|
||||
):
|
||||
self.embedding_model = embedding_model
|
||||
self.embedding_dimensions = embedding_dimensions
|
||||
|
||||
async def embed_text(self, text: List[str]) -> List[float]:
|
||||
embedding_model = TextEmbedding(model_name = self.embedding_model, cache_dir = get_absolute_path("cache/embeddings"))
|
||||
embeddings_list = list(map(lambda embedding: embedding.tolist(), embedding_model.embed(text)))
|
||||
|
||||
return embeddings_list
|
||||
|
||||
def get_vector_size(self) -> int:
|
||||
return self.embedding_dimensions
|
||||
|
|
@ -1,7 +1,8 @@
|
|||
from typing import BinaryIO
|
||||
from pypdf import PdfReader
|
||||
import filetype
|
||||
|
||||
def extract_text_from_file(file: BinaryIO, file_type) -> str:
|
||||
def extract_text_from_file(file: BinaryIO, file_type: filetype.Type) -> str:
|
||||
"""Extract text from a file"""
|
||||
if file_type.extension == "pdf":
|
||||
reader = PdfReader(stream = file)
|
||||
|
|
|
|||
|
|
@ -1,5 +0,0 @@
|
|||
import os
|
||||
|
||||
def get_file_size(file_path: str):
|
||||
"""Get the size of a file"""
|
||||
return os.path.getsize(file_path)
|
||||
|
|
@ -1,4 +1,3 @@
|
|||
import dsp
|
||||
import dspy
|
||||
from dspy.evaluate.evaluate import Evaluate
|
||||
from dspy.primitives.example import Example
|
||||
|
|
|
|||
|
|
@ -1,4 +1,3 @@
|
|||
import dsp
|
||||
import dspy
|
||||
from dspy.teleprompt import BootstrapFewShot
|
||||
from dspy.primitives.example import Example
|
||||
|
|
|
|||
|
|
@ -5,7 +5,7 @@ from .models.Task import Task
|
|||
|
||||
class PipelineConfig(BaseModel):
|
||||
batch_count: int = 10
|
||||
description: Optional[str]
|
||||
description: Optional[str] = None
|
||||
|
||||
class Pipeline():
|
||||
id: UUID = uuid4()
|
||||
|
|
|
|||
|
|
@ -1,8 +1,8 @@
|
|||
from typing import Any, Callable, Generator
|
||||
from typing import Any, Callable, Generator, List
|
||||
import asyncio
|
||||
from ..tasks.Task import Task
|
||||
|
||||
def run_tasks_parallel(tasks: [Task]) -> Callable[[Any], Generator[Any, Any, Any]]:
|
||||
def run_tasks_parallel(tasks: List[Task]) -> Callable[[Any], Generator[Any, Any, Any]]:
|
||||
async def parallel_run(*args, **kwargs):
|
||||
parallel_tasks = [asyncio.create_task(task.run(*args, **kwargs)) for task in tasks]
|
||||
|
||||
|
|
|
|||
|
|
@ -18,7 +18,7 @@ class Directory(BaseModel):
|
|||
directories: List['Directory'] = []
|
||||
|
||||
# Allows recursive Directory Model
|
||||
Directory.update_forward_refs()
|
||||
Directory.model_rebuild()
|
||||
|
||||
class RepositoryProperties(BaseModel):
|
||||
custom_properties: Optional[Dict[str, Any]] = None
|
||||
|
|
|
|||
|
|
@ -6,15 +6,15 @@ class BaseClass(BaseModel):
|
|||
name: str
|
||||
type: Literal["Class"] = "Class"
|
||||
description: str
|
||||
constructor_parameters: Optional[List[str]]
|
||||
constructor_parameters: Optional[List[str]] = None
|
||||
|
||||
class Class(BaseModel):
|
||||
id: str
|
||||
name: str
|
||||
type: Literal["Class"] = "Class"
|
||||
description: str
|
||||
constructor_parameters: Optional[List[str]]
|
||||
from_class: Optional[BaseClass]
|
||||
constructor_parameters: Optional[List[str]] = None
|
||||
from_class: Optional[BaseClass] = None
|
||||
|
||||
class ClassInstance(BaseModel):
|
||||
id: str
|
||||
|
|
@ -28,7 +28,7 @@ class Function(BaseModel):
|
|||
name: str
|
||||
type: Literal["Function"] = "Function"
|
||||
description: str
|
||||
parameters: Optional[List[str]]
|
||||
parameters: Optional[List[str]] = None
|
||||
return_type: str
|
||||
is_static: Optional[bool] = False
|
||||
|
||||
|
|
@ -38,7 +38,7 @@ class Variable(BaseModel):
|
|||
type: Literal["Variable"] = "Variable"
|
||||
description: str
|
||||
is_static: Optional[bool] = False
|
||||
default_value: Optional[str]
|
||||
default_value: Optional[str] = None
|
||||
|
||||
class Operator(BaseModel):
|
||||
id: str
|
||||
|
|
|
|||
|
|
@ -59,7 +59,7 @@ async def chunk_naive_llm_classifier(data_chunks: list[DocumentChunk], classific
|
|||
data_points.append(
|
||||
DataPoint[Keyword](
|
||||
id=str(classification_type_id),
|
||||
payload=Keyword.parse_obj({
|
||||
payload=Keyword.model_validate({
|
||||
"uuid": str(classification_type_id),
|
||||
"text": classification_type_label,
|
||||
"chunk_id": str(data_chunk.chunk_id),
|
||||
|
|
@ -98,7 +98,7 @@ async def chunk_naive_llm_classifier(data_chunks: list[DocumentChunk], classific
|
|||
data_points.append(
|
||||
DataPoint[Keyword](
|
||||
id=str(classification_subtype_id),
|
||||
payload=Keyword.parse_obj({
|
||||
payload=Keyword.model_validate({
|
||||
"uuid": str(classification_subtype_id),
|
||||
"text": classification_subtype_label,
|
||||
"chunk_id": str(data_chunk.chunk_id),
|
||||
|
|
|
|||
|
|
@ -56,7 +56,7 @@ class OntologyEngine:
|
|||
for item in items:
|
||||
flat_list.extend(await self.recursive_flatten(item, parent_id))
|
||||
elif isinstance(items, dict):
|
||||
model = NodeModel.parse_obj(items)
|
||||
model = NodeModel.model_validate(items)
|
||||
flat_list.append(await self.flatten_model(model, parent_id))
|
||||
for child in model.children:
|
||||
flat_list.extend(await self.recursive_flatten(child, model.node_id))
|
||||
|
|
|
|||
|
|
@ -12,7 +12,7 @@ class NodeModel(BaseModel):
|
|||
default_relationship: Optional[RelationshipModel] = None
|
||||
children: List[Union[Dict[str, Any], "NodeModel"]] = Field(default_factory=list)
|
||||
|
||||
NodeModel.update_forward_refs()
|
||||
NodeModel.model_rebuild()
|
||||
|
||||
|
||||
class OntologyNode(BaseModel):
|
||||
|
|
|
|||
|
|
@ -11,7 +11,7 @@ async def save_chunks_to_store(data_chunks: list[DocumentChunk], collection_name
|
|||
|
||||
# Remove and unlink existing chunks
|
||||
if await vector_engine.has_collection(collection_name):
|
||||
existing_chunks = [DocumentChunk.parse_obj(chunk.payload) for chunk in (await vector_engine.retrieve(
|
||||
existing_chunks = [DocumentChunk.model_validate(chunk.payload) for chunk in (await vector_engine.retrieve(
|
||||
collection_name,
|
||||
[str(chunk.chunk_id) for chunk in data_chunks],
|
||||
))]
|
||||
|
|
|
|||
|
|
@ -49,7 +49,7 @@ async def main():
|
|||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query = random_node_name)
|
||||
assert len(search_results) != 0, "Query related summaries don't exist."
|
||||
print("\n\Extracted summaries are:\n")
|
||||
print("\nExtracted summaries are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
|
|
|
|||
|
|
@ -53,7 +53,7 @@ async def main():
|
|||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query = random_node_name)
|
||||
assert len(search_results) != 0, "Query related summaries don't exist."
|
||||
print("\n\Extracted summaries are:\n")
|
||||
print("\nExtracted summaries are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
|
|
|
|||
|
|
@ -54,7 +54,7 @@ async def main():
|
|||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query = random_node_name)
|
||||
assert len(search_results) != 0, "Query related summaries don't exist."
|
||||
print("\n\Extracted summaries are:\n")
|
||||
print("\nExtracted summaries are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
|
|
|
|||
|
|
@ -52,7 +52,7 @@ async def main():
|
|||
|
||||
search_results = await cognee.search(SearchType.SUMMARIES, query = random_node_name)
|
||||
assert len(search_results) != 0, "Query related summaries don't exist."
|
||||
print("\n\Extracted summaries are:\n")
|
||||
print("\nExtracted summaries are:\n")
|
||||
for result in search_results:
|
||||
print(f"{result}\n")
|
||||
|
||||
|
|
|
|||
0
log.txt
Normal file
0
log.txt
Normal file
2548
poetry.lock
generated
2548
poetry.lock
generated
File diff suppressed because it is too large
Load diff
|
|
@ -19,53 +19,51 @@ classifiers = [
|
|||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.9.0,<3.12"
|
||||
openai = "1.27.0"
|
||||
openai = "1.52.0"
|
||||
pydantic = "2.8.2"
|
||||
python-dotenv = "1.0.1"
|
||||
fastapi = "^0.109.2"
|
||||
uvicorn = "0.22.0"
|
||||
requests = "2.32.3"
|
||||
aiohttp = "3.10.10"
|
||||
typing_extensions = "4.12.2"
|
||||
dspy = "2.5.25"
|
||||
nest_asyncio = "1.6.0"
|
||||
numpy = "1.26.4"
|
||||
datasets = "3.1.0"
|
||||
falkordb = "1.0.9"
|
||||
boto3 = "^1.26.125"
|
||||
botocore="^1.35.54"
|
||||
gunicorn = "^20.1.0"
|
||||
sqlalchemy = "2.0.35"
|
||||
instructor = "1.3.5"
|
||||
instructor = "1.6.3"
|
||||
networkx = "^3.2.1"
|
||||
debugpy = "1.8.2"
|
||||
pyarrow = "15.0.0"
|
||||
pylint = "^3.0.3"
|
||||
aiosqlite = "^0.20.0"
|
||||
pandas = "2.0.3"
|
||||
greenlet = "^3.0.3"
|
||||
ruff = "^0.2.2"
|
||||
filetype = "^1.2.0"
|
||||
nltk = "^3.8.1"
|
||||
dlt = {extras = ["sqlalchemy"], version = "^1.2.0"}
|
||||
overrides = "^7.7.0"
|
||||
aiofiles = "^23.2.1"
|
||||
qdrant-client = "^1.9.0"
|
||||
graphistry = "^0.33.5"
|
||||
tenacity = "^8.2.3"
|
||||
tenacity = "^9.0.0"
|
||||
weaviate-client = "4.6.7"
|
||||
scikit-learn = "^1.5.0"
|
||||
fastembed = "0.2.7"
|
||||
pypdf = "^4.1.0"
|
||||
neo4j = "^5.20.0"
|
||||
jinja2 = "^3.1.3"
|
||||
matplotlib = "^3.8.3"
|
||||
structlog = "^24.1.0"
|
||||
tiktoken = "0.7.0"
|
||||
langchain_text_splitters = "0.3.2"
|
||||
langsmith = "0.1.139"
|
||||
langdetect = "1.0.9"
|
||||
posthog = "^3.5.0"
|
||||
lancedb = "0.8.0"
|
||||
litellm = "1.38.10"
|
||||
litellm = "1.49.1"
|
||||
groq = "0.8.0"
|
||||
tantivy = "^0.22.0"
|
||||
tokenizers ="0.15.2"
|
||||
transformers ="4.39.0"
|
||||
python-multipart = "^0.0.9"
|
||||
langfuse = "^2.32.0"
|
||||
protobuf = "<5.0.0"
|
||||
pydantic-settings = "^2.2.1"
|
||||
anthropic = "^0.26.1"
|
||||
pdfplumber = "^0.11.1"
|
||||
sentry-sdk = {extras = ["fastapi"], version = "^2.9.0"}
|
||||
fastapi-users = { version = "*", extras = ["sqlalchemy"] }
|
||||
asyncpg = "^0.29.0"
|
||||
|
|
@ -88,6 +86,11 @@ pytest-asyncio = "^0.21.1"
|
|||
coverage = "^7.3.2"
|
||||
mypy = "^1.7.1"
|
||||
notebook = "^7.1.1"
|
||||
deptry = "^0.20.0"
|
||||
debugpy = "1.8.2"
|
||||
pylint = "^3.0.3"
|
||||
ruff = "^0.2.2"
|
||||
tweepy = "4.14.0"
|
||||
|
||||
[tool.poetry.group.docs.dependencies]
|
||||
mkdocs-material = "^9.5.42"
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue