Merge pull request #176 from topoteretes/fix/integration-test-warnings

COG-485 - Fix/integration test warnings
This commit is contained in:
0xideas 2024-11-05 13:56:58 +01:00 committed by GitHub
commit d3d49b64be
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
21 changed files with 1370 additions and 1292 deletions

View file

@ -146,7 +146,7 @@ class DatasetDTO(OutDTO):
id: UUID
name: str
created_at: datetime
updated_at: Optional[datetime]
updated_at: Optional[datetime] = None
owner_id: UUID
@app.get("/api/v1/datasets", response_model = list[DatasetDTO])
@ -200,7 +200,7 @@ class DataDTO(OutDTO):
id: UUID
name: str
created_at: datetime
updated_at: Optional[datetime]
updated_at: Optional[datetime] = None
extension: str
mime_type: str
raw_data_location: str

View file

@ -1,25 +0,0 @@
from typing import List, Optional
from fastembed import TextEmbedding
from cognee.root_dir import get_absolute_path
from cognee.infrastructure.databases.vector.embeddings.EmbeddingEngine import EmbeddingEngine
class FastembedEmbeddingEngine(EmbeddingEngine):
embedding_model: str
embedding_dimensions: int
def __init__(
self,
embedding_model: Optional[str] = "BAAI/bge-large-en-v1.5",
embedding_dimensions: Optional[int] = 1024,
):
self.embedding_model = embedding_model
self.embedding_dimensions = embedding_dimensions
async def embed_text(self, text: List[str]) -> List[float]:
embedding_model = TextEmbedding(model_name = self.embedding_model, cache_dir = get_absolute_path("cache/embeddings"))
embeddings_list = list(map(lambda embedding: embedding.tolist(), embedding_model.embed(text)))
return embeddings_list
def get_vector_size(self) -> int:
return self.embedding_dimensions

View file

@ -1,7 +1,8 @@
from typing import BinaryIO
from pypdf import PdfReader
import filetype
def extract_text_from_file(file: BinaryIO, file_type) -> str:
def extract_text_from_file(file: BinaryIO, file_type: filetype.Type) -> str:
"""Extract text from a file"""
if file_type.extension == "pdf":
reader = PdfReader(stream = file)

View file

@ -1,5 +0,0 @@
import os
def get_file_size(file_path: str):
"""Get the size of a file"""
return os.path.getsize(file_path)

View file

@ -1,4 +1,3 @@
import dsp
import dspy
from dspy.evaluate.evaluate import Evaluate
from dspy.primitives.example import Example

View file

@ -1,4 +1,3 @@
import dsp
import dspy
from dspy.teleprompt import BootstrapFewShot
from dspy.primitives.example import Example

View file

@ -5,7 +5,7 @@ from .models.Task import Task
class PipelineConfig(BaseModel):
batch_count: int = 10
description: Optional[str]
description: Optional[str] = None
class Pipeline():
id: UUID = uuid4()

View file

@ -1,8 +1,8 @@
from typing import Any, Callable, Generator
from typing import Any, Callable, Generator, List
import asyncio
from ..tasks.Task import Task
def run_tasks_parallel(tasks: [Task]) -> Callable[[Any], Generator[Any, Any, Any]]:
def run_tasks_parallel(tasks: List[Task]) -> Callable[[Any], Generator[Any, Any, Any]]:
async def parallel_run(*args, **kwargs):
parallel_tasks = [asyncio.create_task(task.run(*args, **kwargs)) for task in tasks]

View file

@ -18,7 +18,7 @@ class Directory(BaseModel):
directories: List['Directory'] = []
# Allows recursive Directory Model
Directory.update_forward_refs()
Directory.model_rebuild()
class RepositoryProperties(BaseModel):
custom_properties: Optional[Dict[str, Any]] = None

View file

@ -6,15 +6,15 @@ class BaseClass(BaseModel):
name: str
type: Literal["Class"] = "Class"
description: str
constructor_parameters: Optional[List[str]]
constructor_parameters: Optional[List[str]] = None
class Class(BaseModel):
id: str
name: str
type: Literal["Class"] = "Class"
description: str
constructor_parameters: Optional[List[str]]
from_class: Optional[BaseClass]
constructor_parameters: Optional[List[str]] = None
from_class: Optional[BaseClass] = None
class ClassInstance(BaseModel):
id: str
@ -28,7 +28,7 @@ class Function(BaseModel):
name: str
type: Literal["Function"] = "Function"
description: str
parameters: Optional[List[str]]
parameters: Optional[List[str]] = None
return_type: str
is_static: Optional[bool] = False
@ -38,7 +38,7 @@ class Variable(BaseModel):
type: Literal["Variable"] = "Variable"
description: str
is_static: Optional[bool] = False
default_value: Optional[str]
default_value: Optional[str] = None
class Operator(BaseModel):
id: str

View file

@ -59,7 +59,7 @@ async def chunk_naive_llm_classifier(data_chunks: list[DocumentChunk], classific
data_points.append(
DataPoint[Keyword](
id=str(classification_type_id),
payload=Keyword.parse_obj({
payload=Keyword.model_validate({
"uuid": str(classification_type_id),
"text": classification_type_label,
"chunk_id": str(data_chunk.chunk_id),
@ -98,7 +98,7 @@ async def chunk_naive_llm_classifier(data_chunks: list[DocumentChunk], classific
data_points.append(
DataPoint[Keyword](
id=str(classification_subtype_id),
payload=Keyword.parse_obj({
payload=Keyword.model_validate({
"uuid": str(classification_subtype_id),
"text": classification_subtype_label,
"chunk_id": str(data_chunk.chunk_id),

View file

@ -56,7 +56,7 @@ class OntologyEngine:
for item in items:
flat_list.extend(await self.recursive_flatten(item, parent_id))
elif isinstance(items, dict):
model = NodeModel.parse_obj(items)
model = NodeModel.model_validate(items)
flat_list.append(await self.flatten_model(model, parent_id))
for child in model.children:
flat_list.extend(await self.recursive_flatten(child, model.node_id))

View file

@ -12,7 +12,7 @@ class NodeModel(BaseModel):
default_relationship: Optional[RelationshipModel] = None
children: List[Union[Dict[str, Any], "NodeModel"]] = Field(default_factory=list)
NodeModel.update_forward_refs()
NodeModel.model_rebuild()
class OntologyNode(BaseModel):

View file

@ -11,7 +11,7 @@ async def save_chunks_to_store(data_chunks: list[DocumentChunk], collection_name
# Remove and unlink existing chunks
if await vector_engine.has_collection(collection_name):
existing_chunks = [DocumentChunk.parse_obj(chunk.payload) for chunk in (await vector_engine.retrieve(
existing_chunks = [DocumentChunk.model_validate(chunk.payload) for chunk in (await vector_engine.retrieve(
collection_name,
[str(chunk.chunk_id) for chunk in data_chunks],
))]

View file

@ -49,7 +49,7 @@ async def main():
search_results = await cognee.search(SearchType.SUMMARIES, query = random_node_name)
assert len(search_results) != 0, "Query related summaries don't exist."
print("\n\Extracted summaries are:\n")
print("\nExtracted summaries are:\n")
for result in search_results:
print(f"{result}\n")

View file

@ -53,7 +53,7 @@ async def main():
search_results = await cognee.search(SearchType.SUMMARIES, query = random_node_name)
assert len(search_results) != 0, "Query related summaries don't exist."
print("\n\Extracted summaries are:\n")
print("\nExtracted summaries are:\n")
for result in search_results:
print(f"{result}\n")

View file

@ -54,7 +54,7 @@ async def main():
search_results = await cognee.search(SearchType.SUMMARIES, query = random_node_name)
assert len(search_results) != 0, "Query related summaries don't exist."
print("\n\Extracted summaries are:\n")
print("\nExtracted summaries are:\n")
for result in search_results:
print(f"{result}\n")

View file

@ -52,7 +52,7 @@ async def main():
search_results = await cognee.search(SearchType.SUMMARIES, query = random_node_name)
assert len(search_results) != 0, "Query related summaries don't exist."
print("\n\Extracted summaries are:\n")
print("\nExtracted summaries are:\n")
for result in search_results:
print(f"{result}\n")

0
log.txt Normal file
View file

2548
poetry.lock generated

File diff suppressed because it is too large Load diff

View file

@ -19,53 +19,51 @@ classifiers = [
[tool.poetry.dependencies]
python = ">=3.9.0,<3.12"
openai = "1.27.0"
openai = "1.52.0"
pydantic = "2.8.2"
python-dotenv = "1.0.1"
fastapi = "^0.109.2"
uvicorn = "0.22.0"
requests = "2.32.3"
aiohttp = "3.10.10"
typing_extensions = "4.12.2"
dspy = "2.5.25"
nest_asyncio = "1.6.0"
numpy = "1.26.4"
datasets = "3.1.0"
falkordb = "1.0.9"
boto3 = "^1.26.125"
botocore="^1.35.54"
gunicorn = "^20.1.0"
sqlalchemy = "2.0.35"
instructor = "1.3.5"
instructor = "1.6.3"
networkx = "^3.2.1"
debugpy = "1.8.2"
pyarrow = "15.0.0"
pylint = "^3.0.3"
aiosqlite = "^0.20.0"
pandas = "2.0.3"
greenlet = "^3.0.3"
ruff = "^0.2.2"
filetype = "^1.2.0"
nltk = "^3.8.1"
dlt = {extras = ["sqlalchemy"], version = "^1.2.0"}
overrides = "^7.7.0"
aiofiles = "^23.2.1"
qdrant-client = "^1.9.0"
graphistry = "^0.33.5"
tenacity = "^8.2.3"
tenacity = "^9.0.0"
weaviate-client = "4.6.7"
scikit-learn = "^1.5.0"
fastembed = "0.2.7"
pypdf = "^4.1.0"
neo4j = "^5.20.0"
jinja2 = "^3.1.3"
matplotlib = "^3.8.3"
structlog = "^24.1.0"
tiktoken = "0.7.0"
langchain_text_splitters = "0.3.2"
langsmith = "0.1.139"
langdetect = "1.0.9"
posthog = "^3.5.0"
lancedb = "0.8.0"
litellm = "1.38.10"
litellm = "1.49.1"
groq = "0.8.0"
tantivy = "^0.22.0"
tokenizers ="0.15.2"
transformers ="4.39.0"
python-multipart = "^0.0.9"
langfuse = "^2.32.0"
protobuf = "<5.0.0"
pydantic-settings = "^2.2.1"
anthropic = "^0.26.1"
pdfplumber = "^0.11.1"
sentry-sdk = {extras = ["fastapi"], version = "^2.9.0"}
fastapi-users = { version = "*", extras = ["sqlalchemy"] }
asyncpg = "^0.29.0"
@ -88,6 +86,11 @@ pytest-asyncio = "^0.21.1"
coverage = "^7.3.2"
mypy = "^1.7.1"
notebook = "^7.1.1"
deptry = "^0.20.0"
debugpy = "1.8.2"
pylint = "^3.0.3"
ruff = "^0.2.2"
tweepy = "4.14.0"
[tool.poetry.group.docs.dependencies]
mkdocs-material = "^9.5.42"