72 lines
2.2 KiB
Markdown
72 lines
2.2 KiB
Markdown
# aquery_data 函数实现需求
|
||
|
||
## 项目背景
|
||
|
||
为 LightRAG 项目添加一个 aquery_data 方法用于返回与送给LLM完全一致结构化原始数据。
|
||
|
||
## 目标
|
||
|
||
1. **逻辑复用**:最大程度复用现有的查询处理逻辑, 复用 `aquery` 的逻辑来实现 aquery_data,仅在调用LLM之前返回查询结果的原始数据
|
||
2. **数据一致性**:确保 `aquery_data` 返回的数据与 `aquery` 发送给LLM的数据完全一致, 确保返回的数据与送给LLM的实际情况完全相符合,包括所有token截断和处理步骤
|
||
3. **向后兼容**:不影响现有的 `aquery` 功能
|
||
|
||
## 实现方案
|
||
|
||
统一通过 `_build_llm_context` 获取LLM上下文和原始数据。修改 `kg_query` 和 `naive_query` 让它们同时返回原始数据和LLM响应, 通过添加 `return_raw_data` 参数来控制底层函数是否调用LLM,这样可以:
|
||
- 最小化代码改动
|
||
- 保持逻辑一致性
|
||
- 确保数据同步更新
|
||
|
||
## 数据结构设计
|
||
|
||
### 返回的原始数据结构
|
||
|
||
```python
|
||
{
|
||
"entities": [
|
||
{
|
||
"entity_name": str,
|
||
"entity_type": str,
|
||
"description": str,
|
||
"source_id": str,
|
||
"file_path": str,
|
||
"created_at": int,
|
||
# ... 其他完整字段
|
||
}
|
||
],
|
||
"relationships": [
|
||
{
|
||
"src_id": str,
|
||
"tgt_id": str,
|
||
"description": str,
|
||
"keywords": str,
|
||
"weight": float,
|
||
"source_id": str,
|
||
"file_path": str,
|
||
# ... 其他完整字段
|
||
}
|
||
],
|
||
"chunks": [
|
||
{
|
||
"content": str,
|
||
"file_path": str,
|
||
"chunk_id": str,
|
||
# ... 其他完整字段
|
||
}
|
||
],
|
||
"metadata": {
|
||
"query_mode": str,
|
||
"keywords": {
|
||
"high_level": list[str],
|
||
"low_level": list[str]
|
||
},
|
||
"processing_info": {
|
||
"total_entities_found": int,
|
||
"total_relations_found": int,
|
||
"entities_after_truncation": int,
|
||
"relations_after_truncation": int,
|
||
"merged_chunks_found": int,
|
||
"chunks_after_truncation": int
|
||
}
|
||
}
|
||
}
|