* Remove outdated documentation files: Quick Start Guide, Apache AGE Analysis, and Scratchpad. * Add multi-tenant testing strategy and ADR index documentation - Introduced ADR 008 detailing the multi-tenant testing strategy for the ./starter environment, covering compatibility and multi-tenant modes, testing scenarios, and implementation details. - Created a comprehensive ADR index (README.md) summarizing all architecture decision records related to the multi-tenant implementation, including purpose, key sections, and reading paths for different roles. * feat(docs): Add comprehensive multi-tenancy guide and README for LightRAG Enterprise - Introduced `0008-multi-tenancy.md` detailing multi-tenancy architecture, key concepts, roles, permissions, configuration, and API endpoints. - Created `README.md` as the main documentation index, outlining features, quick start, system overview, and deployment options. - Documented the LightRAG architecture, storage backends, LLM integrations, and query modes. - Established a task log (`2025-01-21-lightrag-documentation-log.md`) summarizing documentation creation actions, decisions, and insights.
175 lines
3.7 KiB
Markdown
175 lines
3.7 KiB
Markdown
# LightRAG
|
|
|
|
A lightweight Knowledge Graph Retrieval-Augmented Generation system with multiple LLM backend support.
|
|
|
|
## 🚀 Installation
|
|
|
|
### Prerequisites
|
|
- Python 3.10+
|
|
- Git
|
|
- Docker (optional for Docker deployment)
|
|
|
|
### Native Installation
|
|
|
|
1. Clone the repository:
|
|
```bash
|
|
# Linux/MacOS
|
|
git clone https://github.com/HKUDS/LightRAG.git
|
|
cd LightRAG
|
|
```
|
|
```powershell
|
|
# Windows PowerShell
|
|
git clone https://github.com/HKUDS/LightRAG.git
|
|
cd LightRAG
|
|
```
|
|
|
|
2. Configure your environment:
|
|
```bash
|
|
# Linux/MacOS
|
|
cp .env.example .env
|
|
# Edit .env with your preferred configuration
|
|
```
|
|
```powershell
|
|
# Windows PowerShell
|
|
Copy-Item .env.example .env
|
|
# Edit .env with your preferred configuration
|
|
```
|
|
|
|
3. Create and activate virtual environment:
|
|
```bash
|
|
# Linux/MacOS
|
|
python -m venv venv
|
|
source venv/bin/activate
|
|
```
|
|
```powershell
|
|
# Windows PowerShell
|
|
python -m venv venv
|
|
.\venv\Scripts\Activate
|
|
```
|
|
|
|
4. Install dependencies:
|
|
```bash
|
|
# Both platforms
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
## 🐳 Docker Deployment
|
|
|
|
Docker instructions work the same on all platforms with Docker Desktop installed.
|
|
|
|
1. Build and start the container:
|
|
```bash
|
|
docker-compose up -d
|
|
```
|
|
|
|
### Configuration Options
|
|
|
|
LightRAG can be configured using environment variables in the `.env` file:
|
|
|
|
#### Server Configuration
|
|
- `HOST`: Server host (default: 0.0.0.0)
|
|
- `PORT`: Server port (default: 9621)
|
|
|
|
#### LLM Configuration
|
|
- `LLM_BINDING`: LLM backend to use (lollms/ollama/openai)
|
|
- `LLM_BINDING_HOST`: LLM server host URL
|
|
- `LLM_MODEL`: Model name to use
|
|
|
|
#### Embedding Configuration
|
|
- `EMBEDDING_BINDING`: Embedding backend (lollms/ollama/openai)
|
|
- `EMBEDDING_BINDING_HOST`: Embedding server host URL
|
|
- `EMBEDDING_MODEL`: Embedding model name
|
|
|
|
#### RAG Configuration
|
|
- `MAX_ASYNC`: Maximum async operations
|
|
- `MAX_TOKENS`: Maximum token size
|
|
- `EMBEDDING_DIM`: Embedding dimensions
|
|
|
|
#### Security
|
|
- `LIGHTRAG_API_KEY`: API key for authentication
|
|
|
|
### Data Storage Paths
|
|
|
|
The system uses the following paths for data storage:
|
|
```
|
|
data/
|
|
├── rag_storage/ # RAG data persistence
|
|
└── inputs/ # Input documents
|
|
```
|
|
|
|
### Example Deployments
|
|
|
|
1. Using with Ollama:
|
|
```env
|
|
LLM_BINDING=ollama
|
|
LLM_BINDING_HOST=http://host.docker.internal:11434
|
|
LLM_MODEL=mistral
|
|
EMBEDDING_BINDING=ollama
|
|
EMBEDDING_BINDING_HOST=http://host.docker.internal:11434
|
|
EMBEDDING_MODEL=bge-m3
|
|
```
|
|
|
|
you can't just use localhost from docker, that's why you need to use host.docker.internal which is defined in the docker compose file and should allow you to access the localhost services.
|
|
|
|
2. Using with OpenAI:
|
|
```env
|
|
LLM_BINDING=openai
|
|
LLM_MODEL=gpt-3.5-turbo
|
|
EMBEDDING_BINDING=openai
|
|
EMBEDDING_MODEL=text-embedding-ada-002
|
|
OPENAI_API_KEY=your-api-key
|
|
```
|
|
|
|
### API Usage
|
|
|
|
Once deployed, you can interact with the API at `http://localhost:9621`
|
|
|
|
Example query using PowerShell:
|
|
```powershell
|
|
$headers = @{
|
|
"X-API-Key" = "your-api-key"
|
|
"Content-Type" = "application/json"
|
|
}
|
|
$body = @{
|
|
query = "your question here"
|
|
} | ConvertTo-Json
|
|
|
|
Invoke-RestMethod -Uri "http://localhost:9621/query" -Method Post -Headers $headers -Body $body
|
|
```
|
|
|
|
Example query using curl:
|
|
```bash
|
|
curl -X POST "http://localhost:9621/query" \
|
|
-H "X-API-Key: your-api-key" \
|
|
-H "Content-Type: application/json" \
|
|
-d '{"query": "your question here"}'
|
|
```
|
|
|
|
## 🔒 Security
|
|
|
|
Remember to:
|
|
1. Set a strong API key in production
|
|
2. Use SSL in production environments
|
|
3. Configure proper network security
|
|
|
|
## 📦 Updates
|
|
|
|
To update the Docker container:
|
|
```bash
|
|
docker-compose pull
|
|
docker-compose up -d --build
|
|
```
|
|
|
|
To update native installation:
|
|
```bash
|
|
# Linux/MacOS
|
|
git pull
|
|
source venv/bin/activate
|
|
pip install -r requirements.txt
|
|
```
|
|
```powershell
|
|
# Windows PowerShell
|
|
git pull
|
|
.\venv\Scripts\Activate
|
|
pip install -r requirements.txt
|
|
```
|