* Initial plan * Initialize reverse documentation directory and create analysis plan Co-authored-by: raphaelmansuy <1003084+raphaelmansuy@users.noreply.github.com> * Add executive summary and comprehensive architecture documentation Co-authored-by: raphaelmansuy <1003084+raphaelmansuy@users.noreply.github.com> * Add comprehensive data models and dependency migration documentation Co-authored-by: raphaelmansuy <1003084+raphaelmansuy@users.noreply.github.com> * Complete comprehensive TypeScript migration documentation suite Co-authored-by: raphaelmansuy <1003084+raphaelmansuy@users.noreply.github.com> --------- Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com> Co-authored-by: raphaelmansuy <1003084+raphaelmansuy@users.noreply.github.com>
3.2 KiB
3.2 KiB
LightRAG Analysis Scratchpad
Initial Observations (Phase 1 - Repository Structure)
Core Files Analysis
- lightrag.py (141KB): Main class implementation - massive file with ~2200 lines
- operate.py (164KB): Core operations for entity extraction, chunking, querying - ~1782 lines
- utils.py (106KB): Utility functions - extensive helper library
- base.py (30KB): Base classes and interfaces for storage abstractions
- prompt.py (28KB): LLM prompt templates
- utils_graph.py (43KB): Graph utility functions
Architecture Components Identified
1. Storage Layer (lightrag/kg/)
Storage implementations (15+ files):
- JSON-based: json_kv_impl.py, json_doc_status_impl.py
- Vector DBs: nano_vector_db_impl.py, faiss_impl.py, milvus_impl.py, qdrant_impl.py
- Graph DBs: networkx_impl.py, neo4j_impl.py (79KB), memgraph_impl.py (49KB)
- SQL: postgres_impl.py (200KB - largest storage impl!)
- NoSQL: mongo_impl.py (95KB), redis_impl.py (46KB)
- Shared: shared_storage.py (48KB) - centralized storage management
Key insight: PostgreSQL implementation is massive - suggests it's a comprehensive reference implementation
2. LLM Integration Layer (lightrag/llm/)
LLM providers (14 files):
- openai.py (24KB - most comprehensive)
- binding_options.py (27KB) - configuration management
- ollama.py, azure_openai.py, anthropic.py, bedrock.py
- hf.py, llama_index_impl.py, lmdeploy.py
- jina.py (embedding), zhipu.py, nvidia_openai.py, siliconcloud.py, lollms.py
3. API Layer (lightrag/api/)
REST API implementation:
- lightrag_server.py - FastAPI server
- routers/ - modular route handlers
- query_routes.py - query endpoints
- document_routes.py - document management
- graph_routes.py - graph visualization
- ollama_api.py - Ollama compatibility layer
4. WebUI (lightrag_webui/)
TypeScript/React frontend - already exists! This provides reference for:
- TypeScript type definitions (lightrag.ts)
- API client patterns
- Data models used by frontend
Priority Order for Documentation
- Executive Summary + Architecture Overview
- Core Data Models (base.py, types.py)
- Storage Layer Architecture
- LLM Integration Patterns
- Query Pipeline
- Indexing Pipeline
- Dependency Migration Guide
- TypeScript Implementation Roadmap
Documentation Progress - Update
Completed Documents (4/8):
- ✅ Executive Summary (16KB) - Complete system overview
- ✅ Architecture Documentation (33KB) - 6 comprehensive Mermaid diagrams
- ✅ Data Models and Schemas (27KB) - Complete type system
- ✅ Dependency Migration Guide (27KB) - Full npm mapping with complexity assessment
Next Priority Documents:
- Storage Layer Implementation Guide - Deep dive into each storage backend
- TypeScript Project Structure and Migration Roadmap
- LLM Integration Patterns
- API Reference with TypeScript Types
Key Insights for Remaining Docs:
- Focus on practical implementation examples
- Include performance considerations
- Document error handling patterns
- Provide testing strategies
- Add deployment configurations
Total Documentation So Far:
- ~103KB of technical documentation
- 6 Mermaid architecture diagrams
- 50+ code comparison examples
- Complete dependency mapping for 40+ packages