LightRAG/lightrag/evaluation/README.md
anouarbm a172cf893d feat(evaluation): Add sample documents for reproducible RAGAS testing
Add 5 markdown documents that users can index to reproduce evaluation results.

Changes:
- Add sample_documents/ folder with 5 markdown files covering LightRAG features
- Update sample_dataset.json with 3 improved, specific test questions
- Shorten and correct evaluation README (removed outdated info about mock responses)
- Add sample_documents reference with expected ~95% RAGAS score

Test Results with sample documents:
- Average RAGAS Score: 95.28%
- Faithfulness: 100%, Answer Relevance: 96.67%
- Context Recall: 88.89%, Context Precision: 95.56%
2025-11-03 13:28:46 +01:00

204 lines
5.3 KiB
Markdown

# 📊 LightRAG Evaluation Framework
RAGAS-based offline evaluation of your LightRAG system.
## What is RAGAS?
**RAGAS** (Retrieval Augmented Generation Assessment) is a framework for reference-free evaluation of RAG systems using LLMs.
Instead of requiring human-annotated ground truth, RAGAS uses state-of-the-art evaluation metrics:
### Core Metrics
| Metric | What It Measures | Good Score |
|--------|-----------------|-----------|
| **Faithfulness** | Is the answer factually accurate based on retrieved context? | > 0.80 |
| **Answer Relevance** | Is the answer relevant to the user's question? | > 0.80 |
| **Context Recall** | Was all relevant information retrieved from documents? | > 0.80 |
| **Context Precision** | Is retrieved context clean without irrelevant noise? | > 0.80 |
| **RAGAS Score** | Overall quality metric (average of above) | > 0.80 |
---
## 📁 Structure
```
lightrag/evaluation/
├── eval_rag_quality.py # Main evaluation script
├── sample_dataset.json # 3 test questions about LightRAG
├── sample_documents/ # Matching markdown files for testing
│ ├── 01_lightrag_overview.md
│ ├── 02_rag_architecture.md
│ ├── 03_lightrag_improvements.md
│ ├── 04_supported_databases.md
│ ├── 05_evaluation_and_deployment.md
│ └── README.md
├── __init__.py # Package init
├── results/ # Output directory
│ ├── results_YYYYMMDD_HHMMSS.json # Raw metrics in JSON
│ └── results_YYYYMMDD_HHMMSS.csv # Metrics in CSV format
└── README.md # This file
```
**Quick Test:** Index files from `sample_documents/` into LightRAG, then run the evaluator to reproduce results (~89-100% RAGAS score per question).
---
## 🚀 Quick Start
### 1. Install Dependencies
```bash
pip install ragas datasets langfuse
```
Or use your project dependencies (already included in pyproject.toml):
```bash
pip install -e ".[offline-llm]"
```
### 2. Run Evaluation
```bash
cd /path/to/LightRAG
python -m lightrag.evaluation.eval_rag_quality
```
Or directly:
```bash
python lightrag/evaluation/eval_rag_quality.py
```
### 3. View Results
Results are saved automatically in `lightrag/evaluation/results/`:
```
results/
├── results_20241023_143022.json ← Raw metrics in JSON format
└── results_20241023_143022.csv ← Metrics in CSV format (for spreadsheets)
```
**Results include:**
- ✅ Overall RAGAS score
- 📊 Per-metric averages (Faithfulness, Answer Relevance, Context Recall, Context Precision)
- 📋 Individual test case results
- 📈 Performance breakdown by question
---
## 📝 Test Dataset
`sample_dataset.json` contains 3 generic questions about LightRAG. Replace with questions matching YOUR indexed documents.
**Custom Test Cases:**
```json
{
"test_cases": [
{
"question": "Your question here",
"ground_truth": "Expected answer from your data",
"context": "topic"
}
]
}
```
---
## 📊 Interpreting Results
### Score Ranges
- **0.80-1.00**: ✅ Excellent (Production-ready)
- **0.60-0.80**: ⚠️ Good (Room for improvement)
- **0.40-0.60**: ❌ Poor (Needs optimization)
- **0.00-0.40**: 🔴 Critical (Major issues)
### What Low Scores Mean
| Metric | Low Score Indicates |
|--------|-------------------|
| **Faithfulness** | Responses contain hallucinations or incorrect information |
| **Answer Relevance** | Answers don't match what users asked |
| **Context Recall** | Missing important information in retrieval |
| **Context Precision** | Retrieved documents contain irrelevant noise |
### Optimization Tips
1. **Low Faithfulness**:
- Improve entity extraction quality
- Better document chunking
- Tune retrieval temperature
2. **Low Answer Relevance**:
- Improve prompt engineering
- Better query understanding
- Check semantic similarity threshold
3. **Low Context Recall**:
- Increase retrieval `top_k` results
- Improve embedding model
- Better document preprocessing
4. **Low Context Precision**:
- Smaller, focused chunks
- Better filtering
- Improve chunking strategy
---
## 📚 Resources
- [RAGAS Documentation](https://docs.ragas.io/)
- [RAGAS GitHub](https://github.com/explodinggradients/ragas)
---
## 🐛 Troubleshooting
### "ModuleNotFoundError: No module named 'ragas'"
```bash
pip install ragas datasets
```
### "No sample_dataset.json found"
Make sure you're running from the project root:
```bash
cd /path/to/LightRAG
python lightrag/evaluation/eval_rag_quality.py
```
### "LLM API errors during evaluation"
The evaluation uses your configured LLM (OpenAI by default). Ensure:
- API keys are set in `.env`
- Have sufficient API quota
- Network connection is stable
### Evaluation requires running LightRAG API
The evaluator queries a running LightRAG API server at `http://localhost:9621`. Make sure:
1. LightRAG API server is running (`python lightrag/api/lightrag_server.py`)
2. Documents are indexed in your LightRAG instance
3. API is accessible at the configured URL
---
## 📝 Next Steps
1. Index documents into LightRAG (WebUI or API)
2. Start LightRAG API server
3. Run `python lightrag/evaluation/eval_rag_quality.py`
4. Review results (JSON/CSV) in `results/` folder
5. Adjust entity extraction prompts or retrieval settings based on scores
---
**Happy Evaluating! 🚀**