7.4 KiB
Rerank Integration in LightRAG
This document explains how to configure and use the rerank functionality in LightRAG to improve retrieval quality.
⚠️ Important: Parameter Priority
QueryParam.top_k has higher priority than rerank_top_k configuration:
- When you set
QueryParam(top_k=5), it will override thererank_top_k=10setting in LightRAG configuration - This means the actual number of documents sent to rerank will be determined by QueryParam.top_k
- For optimal rerank performance, always consider the top_k value in your QueryParam calls
- Example:
rag.aquery(query, param=QueryParam(mode="naive", top_k=20))will use 20, not rerank_top_k
Overview
Reranking is an optional feature that improves the quality of retrieved documents by re-ordering them based on their relevance to the query. This is particularly useful when you want higher precision in document retrieval across all query modes (naive, local, global, hybrid, mix).
Architecture
The rerank integration follows the same design pattern as the LLM integration:
- Configurable Models: Support for multiple rerank providers through a generic API
- Async Processing: Non-blocking rerank operations
- Error Handling: Graceful fallback to original results
- Optional Feature: Can be enabled/disabled via configuration
- Code Reuse: Single generic implementation for Jina/Cohere compatible APIs
Configuration
Environment Variables
Set these variables in your .env file or environment:
# Enable/disable reranking
ENABLE_RERANK=True
# Rerank model configuration
RERANK_MODEL=BAAI/bge-reranker-v2-m3
RERANK_MAX_ASYNC=4
RERANK_TOP_K=10
# API configuration
RERANK_API_KEY=your_rerank_api_key_here
RERANK_BASE_URL=https://api.your-provider.com/v1/rerank
# Provider-specific keys (optional alternatives)
JINA_API_KEY=your_jina_api_key_here
COHERE_API_KEY=your_cohere_api_key_here
Programmatic Configuration
from lightrag import LightRAG
from lightrag.rerank import custom_rerank, RerankModel
# Method 1: Using environment variables (recommended)
rag = LightRAG(
working_dir="./rag_storage",
llm_model_func=your_llm_func,
embedding_func=your_embedding_func,
# Rerank automatically configured from environment variables
)
# Method 2: Explicit configuration
rerank_model = RerankModel(
rerank_func=custom_rerank,
kwargs={
"model": "BAAI/bge-reranker-v2-m3",
"base_url": "https://api.your-provider.com/v1/rerank",
"api_key": "your_api_key_here",
}
)
rag = LightRAG(
working_dir="./rag_storage",
llm_model_func=your_llm_func,
embedding_func=your_embedding_func,
enable_rerank=True,
rerank_model_func=rerank_model.rerank,
rerank_top_k=10,
)
Supported Providers
1. Custom/Generic API (Recommended)
For Jina/Cohere compatible APIs:
from lightrag.rerank import custom_rerank
# Your custom API endpoint
result = await custom_rerank(
query="your query",
documents=documents,
model="BAAI/bge-reranker-v2-m3",
base_url="https://api.your-provider.com/v1/rerank",
api_key="your_api_key_here",
top_k=10
)
2. Jina AI
from lightrag.rerank import jina_rerank
result = await jina_rerank(
query="your query",
documents=documents,
model="BAAI/bge-reranker-v2-m3",
api_key="your_jina_api_key"
)
3. Cohere
from lightrag.rerank import cohere_rerank
result = await cohere_rerank(
query="your query",
documents=documents,
model="rerank-english-v2.0",
api_key="your_cohere_api_key"
)
Integration Points
Reranking is automatically applied at these key retrieval stages:
- Naive Mode: After vector similarity search in
_get_vector_context - Local Mode: After entity retrieval in
_get_node_data - Global Mode: After relationship retrieval in
_get_edge_data - Hybrid/Mix Modes: Applied to all relevant components
Configuration Parameters
| Parameter | Type | Default | Description |
|---|---|---|---|
enable_rerank |
bool | False | Enable/disable reranking |
rerank_model_name |
str | "BAAI/bge-reranker-v2-m3" | Model identifier |
rerank_model_max_async |
int | 4 | Max concurrent rerank calls |
rerank_top_k |
int | 10 | Number of top results to return ⚠️ Overridden by QueryParam.top_k |
rerank_model_func |
callable | None | Custom rerank function |
rerank_model_kwargs |
dict | {} | Additional rerank parameters |
Example Usage
Basic Usage
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embedding
async def main():
# Initialize with rerank enabled
rag = LightRAG(
working_dir="./rag_storage",
llm_model_func=gpt_4o_mini_complete,
embedding_func=openai_embedding,
enable_rerank=True,
)
# Insert documents
await rag.ainsert([
"Document 1 content...",
"Document 2 content...",
])
# Query with rerank (automatically applied)
result = await rag.aquery(
"Your question here",
param=QueryParam(mode="hybrid", top_k=5) # ⚠️ This top_k=5 overrides rerank_top_k
)
print(result)
asyncio.run(main())
Direct Rerank Usage
from lightrag.rerank import custom_rerank
async def test_rerank():
documents = [
{"content": "Text about topic A"},
{"content": "Text about topic B"},
{"content": "Text about topic C"},
]
reranked = await custom_rerank(
query="Tell me about topic A",
documents=documents,
model="BAAI/bge-reranker-v2-m3",
base_url="https://api.your-provider.com/v1/rerank",
api_key="your_api_key_here",
top_k=2
)
for doc in reranked:
print(f"Score: {doc.get('rerank_score')}, Content: {doc.get('content')}")
Best Practices
- Parameter Priority Awareness: Remember that QueryParam.top_k always overrides rerank_top_k configuration
- Performance: Use reranking selectively for better performance vs. quality tradeoff
- API Limits: Monitor API usage and implement rate limiting if needed
- Fallback: Always handle rerank failures gracefully (returns original results)
- Top-k Selection: Choose appropriate
top_kvalues in QueryParam based on your use case - Cost Management: Consider rerank API costs in your budget planning
Troubleshooting
Common Issues
- API Key Missing: Ensure
RERANK_API_KEYor provider-specific keys are set - Network Issues: Check
RERANK_BASE_URLand network connectivity - Model Errors: Verify the rerank model name is supported by your API
- Document Format: Ensure documents have
contentortextfields
Debug Mode
Enable debug logging to see rerank operations:
import logging
logging.getLogger("lightrag.rerank").setLevel(logging.DEBUG)
Error Handling
The rerank integration includes automatic fallback:
# If rerank fails, original documents are returned
# No exceptions are raised to the user
# Errors are logged for debugging
API Compatibility
The generic rerank API expects this response format:
{
"results": [
{
"index": 0,
"relevance_score": 0.95
},
{
"index": 2,
"relevance_score": 0.87
}
]
}
This is compatible with:
- Jina AI Rerank API
- Cohere Rerank API
- Custom APIs following the same format