LightRAG/lightrag/evaluation/sample_documents/README.md
anouarbm a172cf893d feat(evaluation): Add sample documents for reproducible RAGAS testing
Add 5 markdown documents that users can index to reproduce evaluation results.

Changes:
- Add sample_documents/ folder with 5 markdown files covering LightRAG features
- Update sample_dataset.json with 3 improved, specific test questions
- Shorten and correct evaluation README (removed outdated info about mock responses)
- Add sample_documents reference with expected ~95% RAGAS score

Test Results with sample documents:
- Average RAGAS Score: 95.28%
- Faithfulness: 100%, Answer Relevance: 96.67%
- Context Recall: 88.89%, Context Precision: 95.56%
2025-11-03 13:28:46 +01:00

813 B

Sample Documents for Evaluation

These markdown files correspond to test questions in ../sample_dataset.json.

Usage

  1. Index documents into LightRAG (via WebUI, API, or Python)
  2. Run evaluation: python lightrag/evaluation/eval_rag_quality.py
  3. Expected results: ~91-100% RAGAS score per question

Files

  • 01_lightrag_overview.md - LightRAG framework and hallucination problem
  • 02_rag_architecture.md - RAG system components
  • 03_lightrag_improvements.md - LightRAG vs traditional RAG
  • 04_supported_databases.md - Vector database support
  • 05_evaluation_and_deployment.md - Metrics and deployment

Note

Documents use clear entity-relationship patterns for LightRAG's default entity extraction prompts. For better results with your data, customize lightrag/prompt.py.