LightRAG/lightrag/evaluation/sample_documents/README.md
anouarbm a172cf893d feat(evaluation): Add sample documents for reproducible RAGAS testing
Add 5 markdown documents that users can index to reproduce evaluation results.

Changes:
- Add sample_documents/ folder with 5 markdown files covering LightRAG features
- Update sample_dataset.json with 3 improved, specific test questions
- Shorten and correct evaluation README (removed outdated info about mock responses)
- Add sample_documents reference with expected ~95% RAGAS score

Test Results with sample documents:
- Average RAGAS Score: 95.28%
- Faithfulness: 100%, Answer Relevance: 96.67%
- Context Recall: 88.89%, Context Precision: 95.56%
2025-11-03 13:28:46 +01:00

21 lines
813 B
Markdown

# Sample Documents for Evaluation
These markdown files correspond to test questions in `../sample_dataset.json`.
## Usage
1. **Index documents** into LightRAG (via WebUI, API, or Python)
2. **Run evaluation**: `python lightrag/evaluation/eval_rag_quality.py`
3. **Expected results**: ~91-100% RAGAS score per question
## Files
- `01_lightrag_overview.md` - LightRAG framework and hallucination problem
- `02_rag_architecture.md` - RAG system components
- `03_lightrag_improvements.md` - LightRAG vs traditional RAG
- `04_supported_databases.md` - Vector database support
- `05_evaluation_and_deployment.md` - Metrics and deployment
## Note
Documents use clear entity-relationship patterns for LightRAG's default entity extraction prompts. For better results with your data, customize `lightrag/prompt.py`.