- Add entity_chunks & relation_chunks storage
- Implement KEEP/FIFO limit strategies
- Update env.example with new settings
- Add migration for chunk tracking data
- Support all KV storage
- **Prompts**: Restructured prompts with clearer steps and quality guidelines. Simplified the relationship tuple by removing `relationship_strength`
- **Model**: Updated default entity types to be more comprehensive and consistently capitalized (e.g., `Location`, `Product`)
- Remove separate ENABLE_RERANK flag in favor of rerank_binding="null"
- Change default rerank binding from "cohere" to "null" (disabled)
- Update UI to display both rerank binding and model information
- Read config from selected_rerank_func when env var missing
- Make api_key optional for rerank function
- Add response format validation with proper error handling
- Update Cohere rerank default to official API endpoint
- Increase chunk_top_k from 10 to 20
- Reduce max_entity_tokens to 6000
- Reduce max_relation_tokens to 8000
- Update web UI default values
- Fix max_total_tokens to 30000
- Add env switch to toggle weighted polling vs vector-similarity strategy
- Implement similarity-based sorting with fallback to weighted
- Introduce batch vector read API for vector storage
- Implement vector store and retrive funtion for Nanovector DB
- Preserve default behavior (weighted polling selection method)
- Add ollama_server_infos attribute to LightRAG class with default initialization
- Move default values to constants.py for centralized configuration
- Refactor OllamaServerInfos class with property accessors and CLI support
- Update OllamaAPI to get configuration through rag object instead of direct import
- Add command line arguments for simulated model name and tag
- Fix type imports to avoid circular dependencies
This commit renames the parameter 'llm_model_max_token_size' to 'summary_max_tokens' for better clarity, as it specifically controls the token limit for entity relation summaries.
- Add 9 environment variables to /health endpoint configuration section
- Centralize default constants in lightrag/constants.py for consistency
- Update config.py to use centralized defaults for better maintainability
This commit refactors query parameter management by consolidating settings like `top_k`, token limits, and thresholds into the `LightRAG` class, and consistently sourcing parameters from a single location.