refac: Add robust time out handling for LLM request
This commit is contained in:
parent
ac2db35160
commit
925e631a9a
5 changed files with 331 additions and 112 deletions
|
|
@ -156,8 +156,8 @@ MAX_PARALLEL_INSERT=2
|
|||
### LLM Configuration
|
||||
### LLM_BINDING type: openai, ollama, lollms, azure_openai, aws_bedrock
|
||||
###########################################################
|
||||
### LLM request timeout setting for all llm (set to TIMEOUT if not specified, 0 means no timeout for Ollma)
|
||||
# LLM_TIMEOUT=150
|
||||
### LLM request timeout setting for all llm (0 means no timeout for Ollma)
|
||||
# LLM_TIMEOUT=180
|
||||
|
||||
LLM_BINDING=openai
|
||||
LLM_MODEL=gpt-4o
|
||||
|
|
@ -206,7 +206,7 @@ OLLAMA_LLM_NUM_CTX=32768
|
|||
### Embedding Configuration (Should not be changed after the first file processed)
|
||||
### EMBEDDING_BINDING: ollama, openai, azure_openai, jina, lollms, aws_bedrock
|
||||
####################################################################################
|
||||
### see also env.ollama-binding-options.example for fine tuning ollama
|
||||
# EMBEDDING_TIMEOUT=30
|
||||
EMBEDDING_BINDING=ollama
|
||||
EMBEDDING_MODEL=bge-m3:latest
|
||||
EMBEDDING_DIM=1024
|
||||
|
|
|
|||
|
|
@ -39,6 +39,8 @@ from lightrag.constants import (
|
|||
DEFAULT_LOG_MAX_BYTES,
|
||||
DEFAULT_LOG_BACKUP_COUNT,
|
||||
DEFAULT_LOG_FILENAME,
|
||||
DEFAULT_LLM_TIMEOUT,
|
||||
DEFAULT_EMBEDDING_TIMEOUT,
|
||||
)
|
||||
from lightrag.api.routers.document_routes import (
|
||||
DocumentManager,
|
||||
|
|
@ -256,7 +258,10 @@ def create_app(args):
|
|||
if args.embedding_binding == "jina":
|
||||
from lightrag.llm.jina import jina_embed
|
||||
|
||||
llm_timeout = get_env_value("LLM_TIMEOUT", args.timeout, int)
|
||||
llm_timeout = get_env_value("LLM_TIMEOUT", DEFAULT_LLM_TIMEOUT, int)
|
||||
embedding_timeout = get_env_value(
|
||||
"EMBEDDING_TIMEOUT", DEFAULT_EMBEDDING_TIMEOUT, int
|
||||
)
|
||||
|
||||
async def openai_alike_model_complete(
|
||||
prompt,
|
||||
|
|
@ -487,6 +492,8 @@ def create_app(args):
|
|||
else {}
|
||||
),
|
||||
embedding_func=embedding_func,
|
||||
default_llm_timeout=llm_timeout,
|
||||
default_embedding_timeout=embedding_timeout,
|
||||
kv_storage=args.kv_storage,
|
||||
graph_storage=args.graph_storage,
|
||||
vector_storage=args.vector_storage,
|
||||
|
|
@ -517,6 +524,8 @@ def create_app(args):
|
|||
summary_max_tokens=args.summary_max_tokens,
|
||||
summary_context_size=args.summary_context_size,
|
||||
embedding_func=embedding_func,
|
||||
default_llm_timeout=llm_timeout,
|
||||
default_embedding_timeout=embedding_timeout,
|
||||
kv_storage=args.kv_storage,
|
||||
graph_storage=args.graph_storage,
|
||||
vector_storage=args.vector_storage,
|
||||
|
|
|
|||
|
|
@ -64,8 +64,12 @@ DEFAULT_MAX_PARALLEL_INSERT = 2 # Default maximum parallel insert operations
|
|||
DEFAULT_EMBEDDING_FUNC_MAX_ASYNC = 8 # Default max async for embedding functions
|
||||
DEFAULT_EMBEDDING_BATCH_NUM = 10 # Default batch size for embedding computations
|
||||
|
||||
# gunicorn worker timeout(as default LLM request timeout if LLM_TIMEOUT is not set)
|
||||
DEFAULT_TIMEOUT = 150
|
||||
# Gunicorn worker timeout
|
||||
DEFAULT_TIMEOUT = 210
|
||||
|
||||
# Default llm and embedding timeout
|
||||
DEFAULT_LLM_TIMEOUT = 180
|
||||
DEFAULT_EMBEDDING_TIMEOUT = 30
|
||||
|
||||
# Logging configuration defaults
|
||||
DEFAULT_LOG_MAX_BYTES = 10485760 # Default 10MB
|
||||
|
|
|
|||
|
|
@ -41,6 +41,8 @@ from lightrag.constants import (
|
|||
DEFAULT_MAX_GRAPH_NODES,
|
||||
DEFAULT_ENTITY_TYPES,
|
||||
DEFAULT_SUMMARY_LANGUAGE,
|
||||
DEFAULT_LLM_TIMEOUT,
|
||||
DEFAULT_EMBEDDING_TIMEOUT,
|
||||
)
|
||||
from lightrag.utils import get_env_value
|
||||
|
||||
|
|
@ -277,6 +279,10 @@ class LightRAG:
|
|||
- use_llm_check: If True, validates cached embeddings using an LLM.
|
||||
"""
|
||||
|
||||
default_embedding_timeout: int = field(
|
||||
default=int(os.getenv("EMBEDDING_TIMEOUT", DEFAULT_EMBEDDING_TIMEOUT))
|
||||
)
|
||||
|
||||
# LLM Configuration
|
||||
# ---
|
||||
|
||||
|
|
@ -311,6 +317,10 @@ class LightRAG:
|
|||
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
||||
"""Additional keyword arguments passed to the LLM model function."""
|
||||
|
||||
default_llm_timeout: int = field(
|
||||
default=int(os.getenv("LLM_TIMEOUT", DEFAULT_LLM_TIMEOUT))
|
||||
)
|
||||
|
||||
# Rerank Configuration
|
||||
# ---
|
||||
|
||||
|
|
@ -457,7 +467,8 @@ class LightRAG:
|
|||
|
||||
# Init Embedding
|
||||
self.embedding_func = priority_limit_async_func_call(
|
||||
self.embedding_func_max_async
|
||||
self.embedding_func_max_async,
|
||||
llm_timeout=self.default_embedding_timeout,
|
||||
)(self.embedding_func)
|
||||
|
||||
# Initialize all storages
|
||||
|
|
@ -550,7 +561,11 @@ class LightRAG:
|
|||
# Directly use llm_response_cache, don't create a new object
|
||||
hashing_kv = self.llm_response_cache
|
||||
|
||||
self.llm_model_func = priority_limit_async_func_call(self.llm_model_max_async)(
|
||||
# Get timeout from LLM model kwargs for dynamic timeout calculation
|
||||
self.llm_model_func = priority_limit_async_func_call(
|
||||
self.llm_model_max_async,
|
||||
llm_timeout=self.default_llm_timeout,
|
||||
)(
|
||||
partial(
|
||||
self.llm_model_func, # type: ignore
|
||||
hashing_kv=hashing_kv,
|
||||
|
|
|
|||
|
|
@ -254,6 +254,18 @@ class UnlimitedSemaphore:
|
|||
pass
|
||||
|
||||
|
||||
@dataclass
|
||||
class TaskState:
|
||||
"""Task state tracking for priority queue management"""
|
||||
|
||||
future: asyncio.Future
|
||||
start_time: float
|
||||
execution_start_time: float = None
|
||||
worker_started: bool = False
|
||||
cancellation_requested: bool = False
|
||||
cleanup_done: bool = False
|
||||
|
||||
|
||||
@dataclass
|
||||
class EmbeddingFunc:
|
||||
embedding_dim: int
|
||||
|
|
@ -323,20 +335,58 @@ def parse_cache_key(cache_key: str) -> tuple[str, str, str] | None:
|
|||
return None
|
||||
|
||||
|
||||
# Custom exception class
|
||||
# Custom exception classes
|
||||
class QueueFullError(Exception):
|
||||
"""Raised when the queue is full and the wait times out"""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000):
|
||||
class WorkerTimeoutError(Exception):
|
||||
"""Worker-level timeout exception with specific timeout information"""
|
||||
|
||||
def __init__(self, timeout_value: float, timeout_type: str = "execution"):
|
||||
self.timeout_value = timeout_value
|
||||
self.timeout_type = timeout_type
|
||||
super().__init__(f"Worker {timeout_type} timeout after {timeout_value}s")
|
||||
|
||||
|
||||
class HealthCheckTimeoutError(Exception):
|
||||
"""Health Check-level timeout exception"""
|
||||
|
||||
def __init__(self, timeout_value: float, execution_duration: float):
|
||||
self.timeout_value = timeout_value
|
||||
self.execution_duration = execution_duration
|
||||
super().__init__(
|
||||
f"Task forcefully terminated due to execution timeout (>{timeout_value}s, actual: {execution_duration:.1f}s)"
|
||||
)
|
||||
|
||||
|
||||
def priority_limit_async_func_call(
|
||||
max_size: int,
|
||||
llm_timeout: float = None,
|
||||
max_execution_timeout: float = None,
|
||||
max_task_duration: float = None,
|
||||
max_queue_size: int = 1000,
|
||||
cleanup_timeout: float = 2.0,
|
||||
):
|
||||
"""
|
||||
Enhanced priority-limited asynchronous function call decorator
|
||||
Enhanced priority-limited asynchronous function call decorator with robust timeout handling
|
||||
|
||||
This decorator provides a comprehensive solution for managing concurrent LLM requests with:
|
||||
- Multi-layer timeout protection (LLM -> Worker -> Health Check -> User)
|
||||
- Task state tracking to prevent race conditions
|
||||
- Enhanced health check system with stuck task detection
|
||||
- Proper resource cleanup and error recovery
|
||||
|
||||
Args:
|
||||
max_size: Maximum number of concurrent calls
|
||||
max_queue_size: Maximum queue capacity to prevent memory overflow
|
||||
llm_timeout: LLM provider timeout (from global config), used to calculate other timeouts
|
||||
max_execution_timeout: Maximum time for worker to execute function (defaults to llm_timeout + 30s)
|
||||
max_task_duration: Maximum time before health check intervenes (defaults to llm_timeout + 60s)
|
||||
cleanup_timeout: Maximum time to wait for cleanup operations (defaults to 2.0s)
|
||||
|
||||
Returns:
|
||||
Decorator function
|
||||
"""
|
||||
|
|
@ -345,81 +395,173 @@ def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000):
|
|||
# Ensure func is callable
|
||||
if not callable(func):
|
||||
raise TypeError(f"Expected a callable object, got {type(func)}")
|
||||
|
||||
# Calculate timeout hierarchy if llm_timeout is provided (Dynamic Timeout Calculation)
|
||||
if llm_timeout is not None:
|
||||
nonlocal max_execution_timeout, max_task_duration
|
||||
if max_execution_timeout is None:
|
||||
max_execution_timeout = (
|
||||
llm_timeout + 30
|
||||
) # LLM timeout + 30s buffer for network delays
|
||||
if max_task_duration is None:
|
||||
max_task_duration = (
|
||||
llm_timeout + 60
|
||||
) # LLM timeout + 1min buffer for execution phase
|
||||
|
||||
queue = asyncio.PriorityQueue(maxsize=max_queue_size)
|
||||
tasks = set()
|
||||
initialization_lock = asyncio.Lock()
|
||||
counter = 0
|
||||
shutdown_event = asyncio.Event()
|
||||
initialized = False # Global initialization flag
|
||||
initialized = False
|
||||
worker_health_check_task = None
|
||||
|
||||
# Track active future objects for cleanup
|
||||
# Enhanced task state management
|
||||
task_states = {} # task_id -> TaskState
|
||||
task_states_lock = asyncio.Lock()
|
||||
active_futures = weakref.WeakSet()
|
||||
reinit_count = 0 # Reinitialization counter to track system health
|
||||
reinit_count = 0
|
||||
|
||||
# Worker function to process tasks in the queue
|
||||
async def worker():
|
||||
"""Worker that processes tasks in the priority queue"""
|
||||
"""Enhanced worker that processes tasks with proper timeout and state management"""
|
||||
try:
|
||||
while not shutdown_event.is_set():
|
||||
try:
|
||||
# Use timeout to get tasks, allowing periodic checking of shutdown signal
|
||||
# Get task from queue with timeout for shutdown checking
|
||||
try:
|
||||
(
|
||||
priority,
|
||||
count,
|
||||
future,
|
||||
task_id,
|
||||
args,
|
||||
kwargs,
|
||||
) = await asyncio.wait_for(queue.get(), timeout=1.0)
|
||||
except asyncio.TimeoutError:
|
||||
# Timeout is just to check shutdown signal, continue to next iteration
|
||||
continue
|
||||
|
||||
# If future is cancelled, skip execution
|
||||
if future.cancelled():
|
||||
# Get task state and mark worker as started
|
||||
async with task_states_lock:
|
||||
if task_id not in task_states:
|
||||
queue.task_done()
|
||||
continue
|
||||
task_state = task_states[task_id]
|
||||
task_state.worker_started = True
|
||||
# Record execution start time when worker actually begins processing
|
||||
task_state.execution_start_time = (
|
||||
asyncio.get_event_loop().time()
|
||||
)
|
||||
|
||||
# Check if task was cancelled before worker started
|
||||
if (
|
||||
task_state.cancellation_requested
|
||||
or task_state.future.cancelled()
|
||||
):
|
||||
async with task_states_lock:
|
||||
task_states.pop(task_id, None)
|
||||
queue.task_done()
|
||||
continue
|
||||
|
||||
try:
|
||||
# Execute function
|
||||
result = await func(*args, **kwargs)
|
||||
# If future is not done, set the result
|
||||
if not future.done():
|
||||
future.set_result(result)
|
||||
except asyncio.CancelledError:
|
||||
if not future.done():
|
||||
future.cancel()
|
||||
logger.debug("limit_async: Task cancelled during execution")
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"limit_async: Error in decorated function: {str(e)}"
|
||||
# Execute function with timeout protection
|
||||
if max_execution_timeout is not None:
|
||||
result = await asyncio.wait_for(
|
||||
func(*args, **kwargs), timeout=max_execution_timeout
|
||||
)
|
||||
else:
|
||||
result = await func(*args, **kwargs)
|
||||
|
||||
# Set result if future is still valid
|
||||
if not task_state.future.done():
|
||||
task_state.future.set_result(result)
|
||||
|
||||
except asyncio.TimeoutError:
|
||||
# Worker-level timeout (max_execution_timeout exceeded)
|
||||
logger.warning(
|
||||
f"limit_async: Worker timeout for task {task_id} after {max_execution_timeout}s"
|
||||
)
|
||||
if not future.done():
|
||||
future.set_exception(e)
|
||||
if not task_state.future.done():
|
||||
task_state.future.set_exception(
|
||||
WorkerTimeoutError(
|
||||
max_execution_timeout, "execution"
|
||||
)
|
||||
)
|
||||
except asyncio.CancelledError:
|
||||
# Task was cancelled during execution
|
||||
if not task_state.future.done():
|
||||
task_state.future.cancel()
|
||||
logger.debug(
|
||||
f"limit_async: Task {task_id} cancelled during execution"
|
||||
)
|
||||
except Exception as e:
|
||||
# Function execution error
|
||||
logger.error(
|
||||
f"limit_async: Error in decorated function for task {task_id}: {str(e)}"
|
||||
)
|
||||
if not task_state.future.done():
|
||||
task_state.future.set_exception(e)
|
||||
finally:
|
||||
# Clean up task state
|
||||
async with task_states_lock:
|
||||
task_states.pop(task_id, None)
|
||||
queue.task_done()
|
||||
|
||||
except Exception as e:
|
||||
# Catch all exceptions in worker loop to prevent worker termination
|
||||
# Critical error in worker loop
|
||||
logger.error(f"limit_async: Critical error in worker: {str(e)}")
|
||||
await asyncio.sleep(0.1) # Prevent high CPU usage
|
||||
await asyncio.sleep(0.1)
|
||||
finally:
|
||||
logger.debug("limit_async: Worker exiting")
|
||||
|
||||
async def health_check():
|
||||
"""Periodically check worker health status and recover"""
|
||||
async def enhanced_health_check():
|
||||
"""Enhanced health check with stuck task detection and recovery"""
|
||||
nonlocal initialized
|
||||
try:
|
||||
while not shutdown_event.is_set():
|
||||
await asyncio.sleep(5) # Check every 5 seconds
|
||||
|
||||
# No longer acquire lock, directly operate on task set
|
||||
# Use a copy of the task set to avoid concurrent modification
|
||||
current_time = asyncio.get_event_loop().time()
|
||||
|
||||
# Detect and handle stuck tasks based on execution start time
|
||||
if max_task_duration is not None:
|
||||
stuck_tasks = []
|
||||
async with task_states_lock:
|
||||
for task_id, task_state in list(task_states.items()):
|
||||
# Only check tasks that have started execution
|
||||
if (
|
||||
task_state.worker_started
|
||||
and task_state.execution_start_time is not None
|
||||
and current_time - task_state.execution_start_time
|
||||
> max_task_duration
|
||||
):
|
||||
stuck_tasks.append(
|
||||
(
|
||||
task_id,
|
||||
current_time
|
||||
- task_state.execution_start_time,
|
||||
)
|
||||
)
|
||||
|
||||
# Force cleanup of stuck tasks
|
||||
for task_id, execution_duration in stuck_tasks:
|
||||
logger.warning(
|
||||
f"limit_async: Detected stuck task {task_id} (execution time: {execution_duration:.1f}s), forcing cleanup"
|
||||
)
|
||||
async with task_states_lock:
|
||||
if task_id in task_states:
|
||||
task_state = task_states[task_id]
|
||||
if not task_state.future.done():
|
||||
task_state.future.set_exception(
|
||||
HealthCheckTimeoutError(
|
||||
max_task_duration, execution_duration
|
||||
)
|
||||
)
|
||||
task_states.pop(task_id, None)
|
||||
|
||||
# Worker recovery logic
|
||||
current_tasks = set(tasks)
|
||||
done_tasks = {t for t in current_tasks if t.done()}
|
||||
tasks.difference_update(done_tasks)
|
||||
|
||||
# Calculate active tasks count
|
||||
active_tasks_count = len(tasks)
|
||||
workers_needed = max_size - active_tasks_count
|
||||
|
||||
|
|
@ -432,21 +574,16 @@ def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000):
|
|||
task = asyncio.create_task(worker())
|
||||
new_tasks.add(task)
|
||||
task.add_done_callback(tasks.discard)
|
||||
# Update task set in one operation
|
||||
tasks.update(new_tasks)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"limit_async: Error in health check: {str(e)}")
|
||||
logger.error(f"limit_async: Error in enhanced health check: {str(e)}")
|
||||
finally:
|
||||
logger.debug("limit_async: Health check task exiting")
|
||||
logger.debug("limit_async: Enhanced health check task exiting")
|
||||
initialized = False
|
||||
|
||||
async def ensure_workers():
|
||||
"""Ensure worker threads and health check system are available
|
||||
|
||||
This function checks if the worker system is already initialized.
|
||||
If not, it performs a one-time initialization of all worker threads
|
||||
and starts the health check system.
|
||||
"""
|
||||
"""Ensure worker system is initialized with enhanced error handling"""
|
||||
nonlocal initialized, worker_health_check_task, tasks, reinit_count
|
||||
|
||||
if initialized:
|
||||
|
|
@ -456,45 +593,56 @@ def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000):
|
|||
if initialized:
|
||||
return
|
||||
|
||||
# Increment reinitialization counter if this is not the first initialization
|
||||
if reinit_count > 0:
|
||||
reinit_count += 1
|
||||
logger.warning(
|
||||
f"limit_async: Reinitializing needed (count: {reinit_count})"
|
||||
f"limit_async: Reinitializing system (count: {reinit_count})"
|
||||
)
|
||||
else:
|
||||
reinit_count = 1 # First initialization
|
||||
reinit_count = 1
|
||||
|
||||
# Check for completed tasks and remove them from the task set
|
||||
# Clean up completed tasks
|
||||
current_tasks = set(tasks)
|
||||
done_tasks = {t for t in current_tasks if t.done()}
|
||||
tasks.difference_update(done_tasks)
|
||||
|
||||
# Log active tasks count during reinitialization
|
||||
active_tasks_count = len(tasks)
|
||||
if active_tasks_count > 0 and reinit_count > 1:
|
||||
logger.warning(
|
||||
f"limit_async: {active_tasks_count} tasks still running during reinitialization"
|
||||
)
|
||||
|
||||
# Create initial worker tasks, only adding the number needed
|
||||
# Create worker tasks
|
||||
workers_needed = max_size - active_tasks_count
|
||||
for _ in range(workers_needed):
|
||||
task = asyncio.create_task(worker())
|
||||
tasks.add(task)
|
||||
task.add_done_callback(tasks.discard)
|
||||
|
||||
# Start health check
|
||||
worker_health_check_task = asyncio.create_task(health_check())
|
||||
# Start enhanced health check
|
||||
worker_health_check_task = asyncio.create_task(enhanced_health_check())
|
||||
|
||||
initialized = True
|
||||
logger.info(f"limit_async: {workers_needed} new workers initialized")
|
||||
# Log dynamic timeout configuration
|
||||
timeout_info = []
|
||||
if llm_timeout is not None:
|
||||
timeout_info.append(f"LLM: {llm_timeout}s")
|
||||
if max_execution_timeout is not None:
|
||||
timeout_info.append(f"Execution: {max_execution_timeout}s")
|
||||
if max_task_duration is not None:
|
||||
timeout_info.append(f"Health Check: {max_task_duration}s")
|
||||
|
||||
timeout_str = (
|
||||
f" (Timeouts: {', '.join(timeout_info)})" if timeout_info else ""
|
||||
)
|
||||
logger.info(
|
||||
f"limit_async: {workers_needed} new workers initialized with dynamic timeout handling{timeout_str}"
|
||||
)
|
||||
|
||||
async def shutdown():
|
||||
"""Gracefully shut down all workers and the queue"""
|
||||
"""Gracefully shut down all workers and cleanup resources"""
|
||||
logger.info("limit_async: Shutting down priority queue workers")
|
||||
|
||||
# Set the shutdown event
|
||||
shutdown_event.set()
|
||||
|
||||
# Cancel all active futures
|
||||
|
|
@ -502,7 +650,14 @@ def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000):
|
|||
if not future.done():
|
||||
future.cancel()
|
||||
|
||||
# Wait for the queue to empty
|
||||
# Cancel all pending tasks
|
||||
async with task_states_lock:
|
||||
for task_id, task_state in list(task_states.items()):
|
||||
if not task_state.future.done():
|
||||
task_state.future.cancel()
|
||||
task_states.clear()
|
||||
|
||||
# Wait for queue to empty with timeout
|
||||
try:
|
||||
await asyncio.wait_for(queue.join(), timeout=5.0)
|
||||
except asyncio.TimeoutError:
|
||||
|
|
@ -510,7 +665,7 @@ def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000):
|
|||
"limit_async: Timeout waiting for queue to empty during shutdown"
|
||||
)
|
||||
|
||||
# Cancel all worker tasks
|
||||
# Cancel worker tasks
|
||||
for task in list(tasks):
|
||||
if not task.done():
|
||||
task.cancel()
|
||||
|
|
@ -519,7 +674,7 @@ def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000):
|
|||
if tasks:
|
||||
await asyncio.gather(*tasks, return_exceptions=True)
|
||||
|
||||
# Cancel the health check task
|
||||
# Cancel health check task
|
||||
if worker_health_check_task and not worker_health_check_task.done():
|
||||
worker_health_check_task.cancel()
|
||||
try:
|
||||
|
|
@ -534,77 +689,113 @@ def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000):
|
|||
*args, _priority=10, _timeout=None, _queue_timeout=None, **kwargs
|
||||
):
|
||||
"""
|
||||
Execute the function with priority-based concurrency control
|
||||
Execute function with enhanced priority-based concurrency control and timeout handling
|
||||
|
||||
Args:
|
||||
*args: Positional arguments passed to the function
|
||||
_priority: Call priority (lower values have higher priority)
|
||||
_timeout: Maximum time to wait for function completion (in seconds)
|
||||
_timeout: Maximum time to wait for completion (in seconds, none means determinded by max_execution_timeout of the queue)
|
||||
_queue_timeout: Maximum time to wait for entering the queue (in seconds)
|
||||
**kwargs: Keyword arguments passed to the function
|
||||
|
||||
Returns:
|
||||
The result of the function call
|
||||
|
||||
Raises:
|
||||
TimeoutError: If the function call times out
|
||||
TimeoutError: If the function call times out at any level
|
||||
QueueFullError: If the queue is full and waiting times out
|
||||
Any exception raised by the decorated function
|
||||
"""
|
||||
# Ensure worker system is initialized
|
||||
await ensure_workers()
|
||||
|
||||
# Create a future for the result
|
||||
# Generate unique task ID
|
||||
task_id = f"{id(asyncio.current_task())}_{asyncio.get_event_loop().time()}"
|
||||
future = asyncio.Future()
|
||||
active_futures.add(future)
|
||||
|
||||
nonlocal counter
|
||||
async with initialization_lock:
|
||||
current_count = counter # Use local variable to avoid race conditions
|
||||
counter += 1
|
||||
# Create task state
|
||||
task_state = TaskState(
|
||||
future=future, start_time=asyncio.get_event_loop().time()
|
||||
)
|
||||
|
||||
# Try to put the task into the queue, supporting timeout
|
||||
try:
|
||||
if _queue_timeout is not None:
|
||||
# Use timeout to wait for queue space
|
||||
try:
|
||||
# Register task state
|
||||
async with task_states_lock:
|
||||
task_states[task_id] = task_state
|
||||
|
||||
active_futures.add(future)
|
||||
|
||||
# Get counter for FIFO ordering
|
||||
nonlocal counter
|
||||
async with initialization_lock:
|
||||
current_count = counter
|
||||
counter += 1
|
||||
|
||||
# Queue the task with timeout handling
|
||||
try:
|
||||
if _queue_timeout is not None:
|
||||
await asyncio.wait_for(
|
||||
# current_count is used to ensure FIFO order
|
||||
queue.put((_priority, current_count, future, args, kwargs)),
|
||||
queue.put(
|
||||
(_priority, current_count, task_id, args, kwargs)
|
||||
),
|
||||
timeout=_queue_timeout,
|
||||
)
|
||||
except asyncio.TimeoutError:
|
||||
raise QueueFullError(
|
||||
f"Queue full, timeout after {_queue_timeout} seconds"
|
||||
else:
|
||||
await queue.put(
|
||||
(_priority, current_count, task_id, args, kwargs)
|
||||
)
|
||||
else:
|
||||
# No timeout, may wait indefinitely
|
||||
# current_count is used to ensure FIFO order
|
||||
await queue.put((_priority, current_count, future, args, kwargs))
|
||||
except Exception as e:
|
||||
# Clean up the future
|
||||
if not future.done():
|
||||
future.set_exception(e)
|
||||
active_futures.discard(future)
|
||||
raise
|
||||
except asyncio.TimeoutError:
|
||||
raise QueueFullError(
|
||||
f"Queue full, timeout after {_queue_timeout} seconds"
|
||||
)
|
||||
except Exception as e:
|
||||
# Clean up on queue error
|
||||
if not future.done():
|
||||
future.set_exception(e)
|
||||
raise
|
||||
|
||||
try:
|
||||
# Wait for the result, optional timeout
|
||||
if _timeout is not None:
|
||||
try:
|
||||
# Wait for result with timeout handling
|
||||
try:
|
||||
if _timeout is not None:
|
||||
return await asyncio.wait_for(future, _timeout)
|
||||
except asyncio.TimeoutError:
|
||||
# Cancel the future
|
||||
if not future.done():
|
||||
future.cancel()
|
||||
raise TimeoutError(
|
||||
f"limit_async: Task timed out after {_timeout} seconds"
|
||||
)
|
||||
else:
|
||||
# Wait for the result without timeout
|
||||
return await future
|
||||
finally:
|
||||
# Clean up the future reference
|
||||
active_futures.discard(future)
|
||||
else:
|
||||
return await future
|
||||
except asyncio.TimeoutError:
|
||||
# This is user-level timeout (asyncio.wait_for caused)
|
||||
# Mark cancellation request
|
||||
async with task_states_lock:
|
||||
if task_id in task_states:
|
||||
task_states[task_id].cancellation_requested = True
|
||||
|
||||
# Add the shutdown method to the decorated function
|
||||
# Cancel future
|
||||
if not future.done():
|
||||
future.cancel()
|
||||
|
||||
# Wait for worker cleanup with timeout
|
||||
cleanup_start = asyncio.get_event_loop().time()
|
||||
while (
|
||||
task_id in task_states
|
||||
and asyncio.get_event_loop().time() - cleanup_start
|
||||
< cleanup_timeout
|
||||
):
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
raise TimeoutError(
|
||||
f"limit_async: User timeout after {_timeout} seconds"
|
||||
)
|
||||
except WorkerTimeoutError as e:
|
||||
# This is Worker-level timeout, directly propagate exception information
|
||||
raise TimeoutError(f"limit_async: {str(e)}")
|
||||
except HealthCheckTimeoutError as e:
|
||||
# This is Health Check-level timeout, directly propagate exception information
|
||||
raise TimeoutError(f"limit_async: {str(e)}")
|
||||
|
||||
finally:
|
||||
# Ensure cleanup
|
||||
active_futures.discard(future)
|
||||
async with task_states_lock:
|
||||
task_states.pop(task_id, None)
|
||||
|
||||
# Add shutdown method to decorated function
|
||||
wait_func.shutdown = shutdown
|
||||
|
||||
return wait_func
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue