Add S3 storage client and API routes for document management:
- Implement s3_routes.py with file upload, download, delete endpoints
- Enhance s3_client.py with improved error handling and operations
- Add S3 browser UI component with file viewing and management
- Implement FileViewer and PDFViewer components for storage preview
- Add Resizable and Sheet UI components for layout control
Update backend infrastructure:
- Add bulk operations and parameterized queries to postgres_impl.py
- Enhance document routes with improved type hints
- Update API server registration for new S3 routes
- Refine upload routes and utility functions
Modernize web UI:
- Integrate S3 browser into main application layout
- Update localization files for storage UI strings
- Add storage settings to application configuration
- Sync package dependencies and lock files
Remove obsolete reproduction script:
- Delete reproduce_citation.py (replaced by test suite)
Update configuration:
- Enhance pyrightconfig.json for stricter type checking
Add extensive test suites for API routes and utilities:
- Implement test_search_routes.py (406 lines) for search endpoint validation
- Implement test_upload_routes.py (724 lines) for document upload workflows
- Implement test_s3_client.py (618 lines) for S3 storage operations
- Implement test_citation_utils.py (352 lines) for citation extraction
- Implement test_chunking.py (216 lines) for text chunking validation
Add S3 storage client implementation:
- Create lightrag/storage/s3_client.py with S3 operations
- Add storage module initialization with exports
- Integrate S3 client with document upload handling
Enhance API routes and core functionality:
- Add search_routes.py with full-text and graph search endpoints
- Add upload_routes.py with multipart document upload support
- Update operate.py with bulk operations and health checks
- Enhance postgres_impl.py with bulk upsert and parameterized queries
- Update lightrag_server.py to register new API routes
- Improve utils.py with citation and formatting utilities
Update dependencies and configuration:
- Add S3 and test dependencies to pyproject.toml
- Update docker-compose.test.yml for testing environment
- Sync uv.lock with new dependencies
Apply code quality improvements across all modified files:
- Add type hints to function signatures
- Update imports and router initialization
- Fix logging and error handling
Format entire codebase with ruff and add type hints across all modules:
- Apply ruff formatting to all Python files (121 files, 17K insertions)
- Add type hints to function signatures throughout lightrag core and API
- Update test suite with improved type annotations and docstrings
- Add pyrightconfig.json for static type checking configuration
- Create prompt_optimized.py and test_extraction_prompt_ab.py test files
- Update ruff.toml and .gitignore for improved linting configuration
- Standardize code style across examples, reproduce scripts, and utilities
- Implement bulk upsert_nodes/edges via UNWIND reducing round trips
- Add health_check for graph connectivity and AGE catalog status
- Switch to parameterized queries preventing Cypher injection
- Fix node ID sanitization: strip control chars, escape quotes
Graph Connectivity Awareness:
- Add db_degree property to all KG implementations (NetworkX, Postgres, Neo4j, Mongo, Memgraph)
- Show database degree vs visual degree in node panel with amber badge
- Add visual indicator (amber border) for nodes with hidden connections
- Add "Load X hidden connection(s)" button to expand hidden neighbors
- Add configurable "Expand Depth" setting (1-5) in graph settings
- Use global maxNodes setting for node expansion consistency
Orphan Connection UI:
- Add OrphanConnectionDialog component for manual orphan entity connection
- Add OrphanConnectionControl button in graph sidebar
- Expose /graph/orphans/connect API endpoint for frontend use
Backend Improvements:
- Add get_orphan_entities() and connect_orphan_entities() to base storage
- Add orphan connection configuration parameters
- Improve entity extraction with relationship density requirements
Frontend:
- Add graphExpandDepth and graphIncludeOrphans to settings store
- Add min_degree and include_orphans graph filtering parameters
- Update translations (en.json, zh.json)
• Use "preprocessed" to indicate multimodal processing is required
• Update DocProcessingStatus to process status convertion automatically
• Remove multimodal_processed from DocStatus enum value
• Update UI filter logic
- Add entity_chunks & relation_chunks storage
- Implement KEEP/FIFO limit strategies
- Update env.example with new settings
- Add migration for chunk tracking data
- Support all KV storage
• Add DocStatus.PREPROCESSED enum value
• Update API routes and response models
• Add preprocessed filter in web UI
• Update localization files
• Handle preprocessed status in deletion
• Add include_references param to QueryRequest
• Extend QueryResponse with references field
• Create unified QueryResult data structures
• Refactor kg_query and naive_query functions
• Update streaming to send references first
- Add get_doc_by_file_path to all storages
- Skip processed files in scan operation
- Check duplicates in upload endpoints
- Check duplicates in text insert APIs
- Return status info in duplicate responses
- Read config from selected_rerank_func when env var missing
- Make api_key optional for rerank function
- Add response format validation with proper error handling
- Update Cohere rerank default to official API endpoint
- Add env switch to toggle weighted polling vs vector-similarity strategy
- Implement similarity-based sorting with fallback to weighted
- Introduce batch vector read API for vector storage
- Implement vector store and retrive funtion for Nanovector DB
- Preserve default behavior (weighted polling selection method)
- Introduces an index mapping documents to their corresponding entities and relations. This significantly speeds up `adelete_by_doc_id` by replacing slow graph traversal with a fast key-value lookup.
- Refactors the ingestion pipeline (`merge_nodes_and_edges`) to populate this new index. Adds a one-time data migration script to backfill the index for existing data.
- Add pagination support to BaseDocStatusStorage interface and all implementations (PostgreSQL, MongoDB, Redis, JSON)
- Implement RESTful API endpoints for paginated document queries and status counts
- Create reusable pagination UI components with internationalization support
- Optimize performance with database-level pagination and efficient in-memory processing
- Maintain backward compatibility while adding configurable page sizes (10-200 items)
- Add metadata field to doc_status storage with Unix timestamps for processing start/end times
- Update frontend API types: error -> error_msg, add track_id and metadata support
- Add getTrackStatus API method for document tracking functionality
- Fix frontend DocumentManager to use error_msg field for proper error display
- Ensure full compatibility between backend metadata changes and frontend UI
- To enhance performance during document deletion, new batch-get methods, `get_nodes_by_chunk_ids` and `get_edges_by_chunk_ids`, have been added to the graph storage layer (`BaseGraphStorage` and its implementations). The [`adelete_by_doc_id`](lightrag/lightrag.py:1681) function now leverages these methods to avoid unnecessary iteration over the entire knowledge graph, significantly improving efficiency.
- Graph storage updated: Networkx, Neo4j, Postgres AGE