Refac: Optimize document deletion performance
- Adding chunks_list to dock_status - Adding llm_cache_list to text_chunks - Implemented storage types: JsonKV and Redis
This commit is contained in:
parent
d0f04383cc
commit
e56734cb8b
7 changed files with 208 additions and 71 deletions
|
|
@ -634,6 +634,8 @@ class DocProcessingStatus:
|
|||
"""ISO format timestamp when document was last updated"""
|
||||
chunks_count: int | None = None
|
||||
"""Number of chunks after splitting, used for processing"""
|
||||
chunks_list: list[str] | None = field(default_factory=list)
|
||||
"""List of chunk IDs associated with this document, used for deletion"""
|
||||
error: str | None = None
|
||||
"""Error message if failed"""
|
||||
metadata: dict[str, Any] = field(default_factory=dict)
|
||||
|
|
|
|||
|
|
@ -118,6 +118,10 @@ class JsonDocStatusStorage(DocStatusStorage):
|
|||
return
|
||||
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
||||
async with self._storage_lock:
|
||||
# Ensure chunks_list field exists for new documents
|
||||
for doc_id, doc_data in data.items():
|
||||
if "chunks_list" not in doc_data:
|
||||
doc_data["chunks_list"] = []
|
||||
self._data.update(data)
|
||||
await set_all_update_flags(self.namespace)
|
||||
|
||||
|
|
|
|||
|
|
@ -109,6 +109,11 @@ class JsonKVStorage(BaseKVStorage):
|
|||
return
|
||||
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
||||
async with self._storage_lock:
|
||||
# For text_chunks namespace, ensure llm_cache_list field exists
|
||||
if "text_chunks" in self.namespace:
|
||||
for chunk_id, chunk_data in data.items():
|
||||
if "llm_cache_list" not in chunk_data:
|
||||
chunk_data["llm_cache_list"] = []
|
||||
self._data.update(data)
|
||||
await set_all_update_flags(self.namespace)
|
||||
|
||||
|
|
|
|||
|
|
@ -202,6 +202,12 @@ class RedisKVStorage(BaseKVStorage):
|
|||
return
|
||||
async with self._get_redis_connection() as redis:
|
||||
try:
|
||||
# For text_chunks namespace, ensure llm_cache_list field exists
|
||||
if "text_chunks" in self.namespace:
|
||||
for chunk_id, chunk_data in data.items():
|
||||
if "llm_cache_list" not in chunk_data:
|
||||
chunk_data["llm_cache_list"] = []
|
||||
|
||||
pipe = redis.pipeline()
|
||||
for k, v in data.items():
|
||||
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
|
||||
|
|
@ -601,6 +607,11 @@ class RedisDocStatusStorage(DocStatusStorage):
|
|||
logger.debug(f"Inserting {len(data)} records to {self.namespace}")
|
||||
async with self._get_redis_connection() as redis:
|
||||
try:
|
||||
# Ensure chunks_list field exists for new documents
|
||||
for doc_id, doc_data in data.items():
|
||||
if "chunks_list" not in doc_data:
|
||||
doc_data["chunks_list"] = []
|
||||
|
||||
pipe = redis.pipeline()
|
||||
for k, v in data.items():
|
||||
pipe.set(f"{self.namespace}:{k}", json.dumps(v))
|
||||
|
|
|
|||
|
|
@ -349,6 +349,7 @@ class LightRAG:
|
|||
|
||||
# Fix global_config now
|
||||
global_config = asdict(self)
|
||||
|
||||
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
||||
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
||||
|
||||
|
|
@ -952,6 +953,7 @@ class LightRAG:
|
|||
**dp,
|
||||
"full_doc_id": doc_id,
|
||||
"file_path": file_path, # Add file path to each chunk
|
||||
"llm_cache_list": [], # Initialize empty LLM cache list for each chunk
|
||||
}
|
||||
for dp in self.chunking_func(
|
||||
self.tokenizer,
|
||||
|
|
@ -963,14 +965,17 @@ class LightRAG:
|
|||
)
|
||||
}
|
||||
|
||||
# Process document (text chunks and full docs) in parallel
|
||||
# Create tasks with references for potential cancellation
|
||||
# Process document in two stages
|
||||
# Stage 1: Process text chunks and docs (parallel execution)
|
||||
doc_status_task = asyncio.create_task(
|
||||
self.doc_status.upsert(
|
||||
{
|
||||
doc_id: {
|
||||
"status": DocStatus.PROCESSING,
|
||||
"chunks_count": len(chunks),
|
||||
"chunks_list": list(
|
||||
chunks.keys()
|
||||
), # Save chunks list
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
|
|
@ -986,11 +991,6 @@ class LightRAG:
|
|||
chunks_vdb_task = asyncio.create_task(
|
||||
self.chunks_vdb.upsert(chunks)
|
||||
)
|
||||
entity_relation_task = asyncio.create_task(
|
||||
self._process_entity_relation_graph(
|
||||
chunks, pipeline_status, pipeline_status_lock
|
||||
)
|
||||
)
|
||||
full_docs_task = asyncio.create_task(
|
||||
self.full_docs.upsert(
|
||||
{doc_id: {"content": status_doc.content}}
|
||||
|
|
@ -999,14 +999,26 @@ class LightRAG:
|
|||
text_chunks_task = asyncio.create_task(
|
||||
self.text_chunks.upsert(chunks)
|
||||
)
|
||||
tasks = [
|
||||
|
||||
# First stage tasks (parallel execution)
|
||||
first_stage_tasks = [
|
||||
doc_status_task,
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]
|
||||
await asyncio.gather(*tasks)
|
||||
entity_relation_task = None
|
||||
|
||||
# Execute first stage tasks
|
||||
await asyncio.gather(*first_stage_tasks)
|
||||
|
||||
# Stage 2: Process entity relation graph (after text_chunks are saved)
|
||||
entity_relation_task = asyncio.create_task(
|
||||
self._process_entity_relation_graph(
|
||||
chunks, pipeline_status, pipeline_status_lock
|
||||
)
|
||||
)
|
||||
await entity_relation_task
|
||||
file_extraction_stage_ok = True
|
||||
|
||||
except Exception as e:
|
||||
|
|
@ -1021,14 +1033,14 @@ class LightRAG:
|
|||
)
|
||||
pipeline_status["history_messages"].append(error_msg)
|
||||
|
||||
# Cancel other tasks as they are no longer meaningful
|
||||
for task in [
|
||||
chunks_vdb_task,
|
||||
entity_relation_task,
|
||||
full_docs_task,
|
||||
text_chunks_task,
|
||||
]:
|
||||
if not task.done():
|
||||
# Cancel tasks that are not yet completed
|
||||
all_tasks = first_stage_tasks + (
|
||||
[entity_relation_task]
|
||||
if entity_relation_task
|
||||
else []
|
||||
)
|
||||
for task in all_tasks:
|
||||
if task and not task.done():
|
||||
task.cancel()
|
||||
|
||||
# Persistent llm cache
|
||||
|
|
@ -1078,6 +1090,9 @@ class LightRAG:
|
|||
doc_id: {
|
||||
"status": DocStatus.PROCESSED,
|
||||
"chunks_count": len(chunks),
|
||||
"chunks_list": list(
|
||||
chunks.keys()
|
||||
), # 保留 chunks_list
|
||||
"content": status_doc.content,
|
||||
"content_summary": status_doc.content_summary,
|
||||
"content_length": status_doc.content_length,
|
||||
|
|
@ -1196,6 +1211,7 @@ class LightRAG:
|
|||
pipeline_status=pipeline_status,
|
||||
pipeline_status_lock=pipeline_status_lock,
|
||||
llm_response_cache=self.llm_response_cache,
|
||||
text_chunks_storage=self.text_chunks,
|
||||
)
|
||||
return chunk_results
|
||||
except Exception as e:
|
||||
|
|
@ -1726,28 +1742,10 @@ class LightRAG:
|
|||
file_path="",
|
||||
)
|
||||
|
||||
# 2. Get all chunks related to this document
|
||||
try:
|
||||
all_chunks = await self.text_chunks.get_all()
|
||||
related_chunks = {
|
||||
chunk_id: chunk_data
|
||||
for chunk_id, chunk_data in all_chunks.items()
|
||||
if isinstance(chunk_data, dict)
|
||||
and chunk_data.get("full_doc_id") == doc_id
|
||||
}
|
||||
# 2. Get chunk IDs from document status
|
||||
chunk_ids = set(doc_status_data.get("chunks_list", []))
|
||||
|
||||
# Update pipeline status after getting chunks count
|
||||
async with pipeline_status_lock:
|
||||
log_message = f"Retrieved {len(related_chunks)} of {len(all_chunks)} related chunks"
|
||||
logger.info(log_message)
|
||||
pipeline_status["latest_message"] = log_message
|
||||
pipeline_status["history_messages"].append(log_message)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to retrieve chunks for document {doc_id}: {e}")
|
||||
raise Exception(f"Failed to retrieve document chunks: {e}") from e
|
||||
|
||||
if not related_chunks:
|
||||
if not chunk_ids:
|
||||
logger.warning(f"No chunks found for document {doc_id}")
|
||||
# Mark that deletion operations have started
|
||||
deletion_operations_started = True
|
||||
|
|
@ -1778,7 +1776,6 @@ class LightRAG:
|
|||
file_path=file_path,
|
||||
)
|
||||
|
||||
chunk_ids = set(related_chunks.keys())
|
||||
# Mark that deletion operations have started
|
||||
deletion_operations_started = True
|
||||
|
||||
|
|
@ -1943,7 +1940,7 @@ class LightRAG:
|
|||
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
||||
entities_vdb=self.entities_vdb,
|
||||
relationships_vdb=self.relationships_vdb,
|
||||
text_chunks=self.text_chunks,
|
||||
text_chunks_storage=self.text_chunks,
|
||||
llm_response_cache=self.llm_response_cache,
|
||||
global_config=asdict(self),
|
||||
pipeline_status=pipeline_status,
|
||||
|
|
|
|||
|
|
@ -25,6 +25,7 @@ from .utils import (
|
|||
CacheData,
|
||||
get_conversation_turns,
|
||||
use_llm_func_with_cache,
|
||||
update_chunk_cache_list,
|
||||
)
|
||||
from .base import (
|
||||
BaseGraphStorage,
|
||||
|
|
@ -103,8 +104,6 @@ async def _handle_entity_relation_summary(
|
|||
entity_or_relation_name: str,
|
||||
description: str,
|
||||
global_config: dict,
|
||||
pipeline_status: dict = None,
|
||||
pipeline_status_lock=None,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
) -> str:
|
||||
"""Handle entity relation summary
|
||||
|
|
@ -247,7 +246,7 @@ async def _rebuild_knowledge_from_chunks(
|
|||
knowledge_graph_inst: BaseGraphStorage,
|
||||
entities_vdb: BaseVectorStorage,
|
||||
relationships_vdb: BaseVectorStorage,
|
||||
text_chunks: BaseKVStorage,
|
||||
text_chunks_storage: BaseKVStorage,
|
||||
llm_response_cache: BaseKVStorage,
|
||||
global_config: dict[str, str],
|
||||
pipeline_status: dict | None = None,
|
||||
|
|
@ -261,6 +260,7 @@ async def _rebuild_knowledge_from_chunks(
|
|||
Args:
|
||||
entities_to_rebuild: Dict mapping entity_name -> set of remaining chunk_ids
|
||||
relationships_to_rebuild: Dict mapping (src, tgt) -> set of remaining chunk_ids
|
||||
text_chunks_data: Pre-loaded chunk data dict {chunk_id: chunk_data}
|
||||
"""
|
||||
if not entities_to_rebuild and not relationships_to_rebuild:
|
||||
return
|
||||
|
|
@ -273,6 +273,8 @@ async def _rebuild_knowledge_from_chunks(
|
|||
all_referenced_chunk_ids.update(chunk_ids)
|
||||
for chunk_ids in relationships_to_rebuild.values():
|
||||
all_referenced_chunk_ids.update(chunk_ids)
|
||||
# sort all_referenced_chunk_ids to get a stable order in merge stage
|
||||
all_referenced_chunk_ids = sorted(all_referenced_chunk_ids)
|
||||
|
||||
status_message = f"Rebuilding knowledge from {len(all_referenced_chunk_ids)} cached chunk extractions"
|
||||
logger.info(status_message)
|
||||
|
|
@ -281,9 +283,11 @@ async def _rebuild_knowledge_from_chunks(
|
|||
pipeline_status["latest_message"] = status_message
|
||||
pipeline_status["history_messages"].append(status_message)
|
||||
|
||||
# Get cached extraction results for these chunks
|
||||
# Get cached extraction results for these chunks using storage
|
||||
cached_results = await _get_cached_extraction_results(
|
||||
llm_response_cache, all_referenced_chunk_ids
|
||||
llm_response_cache,
|
||||
all_referenced_chunk_ids,
|
||||
text_chunks_storage=text_chunks_storage,
|
||||
)
|
||||
|
||||
if not cached_results:
|
||||
|
|
@ -299,15 +303,25 @@ async def _rebuild_knowledge_from_chunks(
|
|||
chunk_entities = {} # chunk_id -> {entity_name: [entity_data]}
|
||||
chunk_relationships = {} # chunk_id -> {(src, tgt): [relationship_data]}
|
||||
|
||||
for chunk_id, extraction_result in cached_results.items():
|
||||
for chunk_id, extraction_results in cached_results.items():
|
||||
try:
|
||||
entities, relationships = await _parse_extraction_result(
|
||||
text_chunks=text_chunks,
|
||||
extraction_result=extraction_result,
|
||||
chunk_id=chunk_id,
|
||||
)
|
||||
chunk_entities[chunk_id] = entities
|
||||
chunk_relationships[chunk_id] = relationships
|
||||
# Handle multiple extraction results per chunk
|
||||
chunk_entities[chunk_id] = defaultdict(list)
|
||||
chunk_relationships[chunk_id] = defaultdict(list)
|
||||
|
||||
for extraction_result in extraction_results:
|
||||
entities, relationships = await _parse_extraction_result(
|
||||
text_chunks_storage=text_chunks_storage,
|
||||
extraction_result=extraction_result,
|
||||
chunk_id=chunk_id,
|
||||
)
|
||||
|
||||
# Merge entities and relationships from this extraction result
|
||||
for entity_name, entity_list in entities.items():
|
||||
chunk_entities[chunk_id][entity_name].extend(entity_list)
|
||||
for rel_key, rel_list in relationships.items():
|
||||
chunk_relationships[chunk_id][rel_key].extend(rel_list)
|
||||
|
||||
except Exception as e:
|
||||
status_message = (
|
||||
f"Failed to parse cached extraction result for chunk {chunk_id}: {e}"
|
||||
|
|
@ -387,43 +401,76 @@ async def _rebuild_knowledge_from_chunks(
|
|||
|
||||
|
||||
async def _get_cached_extraction_results(
|
||||
llm_response_cache: BaseKVStorage, chunk_ids: set[str]
|
||||
) -> dict[str, str]:
|
||||
llm_response_cache: BaseKVStorage,
|
||||
chunk_ids: set[str],
|
||||
text_chunks_storage: BaseKVStorage,
|
||||
) -> dict[str, list[str]]:
|
||||
"""Get cached extraction results for specific chunk IDs
|
||||
|
||||
Args:
|
||||
llm_response_cache: LLM response cache storage
|
||||
chunk_ids: Set of chunk IDs to get cached results for
|
||||
text_chunks_data: Pre-loaded chunk data (optional, for performance)
|
||||
text_chunks_storage: Text chunks storage (fallback if text_chunks_data is None)
|
||||
|
||||
Returns:
|
||||
Dict mapping chunk_id -> extraction_result_text
|
||||
Dict mapping chunk_id -> list of extraction_result_text
|
||||
"""
|
||||
cached_results = {}
|
||||
|
||||
# Get all cached data (flattened cache structure)
|
||||
all_cache = await llm_response_cache.get_all()
|
||||
# Collect all LLM cache IDs from chunks
|
||||
all_cache_ids = set()
|
||||
|
||||
for cache_key, cache_entry in all_cache.items():
|
||||
# Read from storage
|
||||
chunk_data_list = await text_chunks_storage.get_by_ids(list(chunk_ids))
|
||||
for chunk_id, chunk_data in zip(chunk_ids, chunk_data_list):
|
||||
if chunk_data and isinstance(chunk_data, dict):
|
||||
llm_cache_list = chunk_data.get("llm_cache_list", [])
|
||||
if llm_cache_list:
|
||||
all_cache_ids.update(llm_cache_list)
|
||||
else:
|
||||
logger.warning(
|
||||
f"Chunk {chunk_id} data is invalid or None: {type(chunk_data)}"
|
||||
)
|
||||
|
||||
if not all_cache_ids:
|
||||
logger.warning(f"No LLM cache IDs found for {len(chunk_ids)} chunk IDs")
|
||||
return cached_results
|
||||
|
||||
# Batch get LLM cache entries
|
||||
cache_data_list = await llm_response_cache.get_by_ids(list(all_cache_ids))
|
||||
|
||||
# Process cache entries and group by chunk_id
|
||||
valid_entries = 0
|
||||
for cache_id, cache_entry in zip(all_cache_ids, cache_data_list):
|
||||
if (
|
||||
isinstance(cache_entry, dict)
|
||||
cache_entry is not None
|
||||
and isinstance(cache_entry, dict)
|
||||
and cache_entry.get("cache_type") == "extract"
|
||||
and cache_entry.get("chunk_id") in chunk_ids
|
||||
):
|
||||
chunk_id = cache_entry["chunk_id"]
|
||||
extraction_result = cache_entry["return"]
|
||||
cached_results[chunk_id] = extraction_result
|
||||
valid_entries += 1
|
||||
|
||||
logger.debug(
|
||||
f"Found {len(cached_results)} cached extraction results for {len(chunk_ids)} chunk IDs"
|
||||
# Support multiple LLM caches per chunk
|
||||
if chunk_id not in cached_results:
|
||||
cached_results[chunk_id] = []
|
||||
cached_results[chunk_id].append(extraction_result)
|
||||
|
||||
logger.info(
|
||||
f"Found {valid_entries} valid cache entries, {len(cached_results)} chunks with results"
|
||||
)
|
||||
return cached_results
|
||||
|
||||
|
||||
async def _parse_extraction_result(
|
||||
text_chunks: BaseKVStorage, extraction_result: str, chunk_id: str
|
||||
text_chunks_storage: BaseKVStorage, extraction_result: str, chunk_id: str
|
||||
) -> tuple[dict, dict]:
|
||||
"""Parse cached extraction result using the same logic as extract_entities
|
||||
|
||||
Args:
|
||||
text_chunks_storage: Text chunks storage to get chunk data
|
||||
extraction_result: The cached LLM extraction result
|
||||
chunk_id: The chunk ID for source tracking
|
||||
|
||||
|
|
@ -431,8 +478,8 @@ async def _parse_extraction_result(
|
|||
Tuple of (entities_dict, relationships_dict)
|
||||
"""
|
||||
|
||||
# Get chunk data for file_path
|
||||
chunk_data = await text_chunks.get_by_id(chunk_id)
|
||||
# Get chunk data for file_path from storage
|
||||
chunk_data = await text_chunks_storage.get_by_id(chunk_id)
|
||||
file_path = (
|
||||
chunk_data.get("file_path", "unknown_source")
|
||||
if chunk_data
|
||||
|
|
@ -805,8 +852,6 @@ async def _merge_nodes_then_upsert(
|
|||
entity_name,
|
||||
description,
|
||||
global_config,
|
||||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
llm_response_cache,
|
||||
)
|
||||
else:
|
||||
|
|
@ -969,8 +1014,6 @@ async def _merge_edges_then_upsert(
|
|||
f"({src_id}, {tgt_id})",
|
||||
description,
|
||||
global_config,
|
||||
pipeline_status,
|
||||
pipeline_status_lock,
|
||||
llm_response_cache,
|
||||
)
|
||||
else:
|
||||
|
|
@ -1146,6 +1189,7 @@ async def extract_entities(
|
|||
pipeline_status: dict = None,
|
||||
pipeline_status_lock=None,
|
||||
llm_response_cache: BaseKVStorage | None = None,
|
||||
text_chunks_storage: BaseKVStorage | None = None,
|
||||
) -> list:
|
||||
use_llm_func: callable = global_config["llm_model_func"]
|
||||
entity_extract_max_gleaning = global_config["entity_extract_max_gleaning"]
|
||||
|
|
@ -1252,6 +1296,9 @@ async def extract_entities(
|
|||
# Get file path from chunk data or use default
|
||||
file_path = chunk_dp.get("file_path", "unknown_source")
|
||||
|
||||
# Create cache keys collector for batch processing
|
||||
cache_keys_collector = []
|
||||
|
||||
# Get initial extraction
|
||||
hint_prompt = entity_extract_prompt.format(
|
||||
**{**context_base, "input_text": content}
|
||||
|
|
@ -1263,7 +1310,10 @@ async def extract_entities(
|
|||
llm_response_cache=llm_response_cache,
|
||||
cache_type="extract",
|
||||
chunk_id=chunk_key,
|
||||
cache_keys_collector=cache_keys_collector,
|
||||
)
|
||||
|
||||
# Store LLM cache reference in chunk (will be handled by use_llm_func_with_cache)
|
||||
history = pack_user_ass_to_openai_messages(hint_prompt, final_result)
|
||||
|
||||
# Process initial extraction with file path
|
||||
|
|
@ -1280,6 +1330,7 @@ async def extract_entities(
|
|||
history_messages=history,
|
||||
cache_type="extract",
|
||||
chunk_id=chunk_key,
|
||||
cache_keys_collector=cache_keys_collector,
|
||||
)
|
||||
|
||||
history += pack_user_ass_to_openai_messages(continue_prompt, glean_result)
|
||||
|
|
@ -1310,11 +1361,21 @@ async def extract_entities(
|
|||
llm_response_cache=llm_response_cache,
|
||||
history_messages=history,
|
||||
cache_type="extract",
|
||||
cache_keys_collector=cache_keys_collector,
|
||||
)
|
||||
if_loop_result = if_loop_result.strip().strip('"').strip("'").lower()
|
||||
if if_loop_result != "yes":
|
||||
break
|
||||
|
||||
# Batch update chunk's llm_cache_list with all collected cache keys
|
||||
if cache_keys_collector and text_chunks_storage:
|
||||
await update_chunk_cache_list(
|
||||
chunk_key,
|
||||
text_chunks_storage,
|
||||
cache_keys_collector,
|
||||
"entity_extraction",
|
||||
)
|
||||
|
||||
processed_chunks += 1
|
||||
entities_count = len(maybe_nodes)
|
||||
relations_count = len(maybe_edges)
|
||||
|
|
|
|||
|
|
@ -1423,6 +1423,48 @@ def lazy_external_import(module_name: str, class_name: str) -> Callable[..., Any
|
|||
return import_class
|
||||
|
||||
|
||||
async def update_chunk_cache_list(
|
||||
chunk_id: str,
|
||||
text_chunks_storage: "BaseKVStorage",
|
||||
cache_keys: list[str],
|
||||
cache_scenario: str = "batch_update",
|
||||
) -> None:
|
||||
"""Update chunk's llm_cache_list with the given cache keys
|
||||
|
||||
Args:
|
||||
chunk_id: Chunk identifier
|
||||
text_chunks_storage: Text chunks storage instance
|
||||
cache_keys: List of cache keys to add to the list
|
||||
cache_scenario: Description of the cache scenario for logging
|
||||
"""
|
||||
if not cache_keys:
|
||||
return
|
||||
|
||||
try:
|
||||
chunk_data = await text_chunks_storage.get_by_id(chunk_id)
|
||||
if chunk_data:
|
||||
# Ensure llm_cache_list exists
|
||||
if "llm_cache_list" not in chunk_data:
|
||||
chunk_data["llm_cache_list"] = []
|
||||
|
||||
# Add cache keys to the list if not already present
|
||||
existing_keys = set(chunk_data["llm_cache_list"])
|
||||
new_keys = [key for key in cache_keys if key not in existing_keys]
|
||||
|
||||
if new_keys:
|
||||
chunk_data["llm_cache_list"].extend(new_keys)
|
||||
|
||||
# Update the chunk in storage
|
||||
await text_chunks_storage.upsert({chunk_id: chunk_data})
|
||||
logger.debug(
|
||||
f"Updated chunk {chunk_id} with {len(new_keys)} cache keys ({cache_scenario})"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to update chunk {chunk_id} with cache references on {cache_scenario}: {e}"
|
||||
)
|
||||
|
||||
|
||||
async def use_llm_func_with_cache(
|
||||
input_text: str,
|
||||
use_llm_func: callable,
|
||||
|
|
@ -1431,6 +1473,7 @@ async def use_llm_func_with_cache(
|
|||
history_messages: list[dict[str, str]] = None,
|
||||
cache_type: str = "extract",
|
||||
chunk_id: str | None = None,
|
||||
cache_keys_collector: list = None,
|
||||
) -> str:
|
||||
"""Call LLM function with cache support
|
||||
|
||||
|
|
@ -1445,6 +1488,8 @@ async def use_llm_func_with_cache(
|
|||
history_messages: History messages list
|
||||
cache_type: Type of cache
|
||||
chunk_id: Chunk identifier to store in cache
|
||||
text_chunks_storage: Text chunks storage to update llm_cache_list
|
||||
cache_keys_collector: Optional list to collect cache keys for batch processing
|
||||
|
||||
Returns:
|
||||
LLM response text
|
||||
|
|
@ -1457,6 +1502,9 @@ async def use_llm_func_with_cache(
|
|||
_prompt = input_text
|
||||
|
||||
arg_hash = compute_args_hash(_prompt)
|
||||
# Generate cache key for this LLM call
|
||||
cache_key = generate_cache_key("default", cache_type, arg_hash)
|
||||
|
||||
cached_return, _1, _2, _3 = await handle_cache(
|
||||
llm_response_cache,
|
||||
arg_hash,
|
||||
|
|
@ -1467,6 +1515,11 @@ async def use_llm_func_with_cache(
|
|||
if cached_return:
|
||||
logger.debug(f"Found cache for {arg_hash}")
|
||||
statistic_data["llm_cache"] += 1
|
||||
|
||||
# Add cache key to collector if provided
|
||||
if cache_keys_collector is not None:
|
||||
cache_keys_collector.append(cache_key)
|
||||
|
||||
return cached_return
|
||||
statistic_data["llm_call"] += 1
|
||||
|
||||
|
|
@ -1491,6 +1544,10 @@ async def use_llm_func_with_cache(
|
|||
),
|
||||
)
|
||||
|
||||
# Add cache key to collector if provided
|
||||
if cache_keys_collector is not None:
|
||||
cache_keys_collector.append(cache_key)
|
||||
|
||||
return res
|
||||
|
||||
# When cache is disabled, directly call LLM
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue